Robust modeling of probabilistic uncertainty in smart Grids: Data ambiguous Chance Constrained Optimum Power Flow

D. Bienstock, M. Chertkov, S. Harnett
{"title":"Robust modeling of probabilistic uncertainty in smart Grids: Data ambiguous Chance Constrained Optimum Power Flow","authors":"D. Bienstock, M. Chertkov, S. Harnett","doi":"10.1109/CDC.2013.6760556","DOIUrl":null,"url":null,"abstract":"Future Grids will integrate time-intermittent renewables and demand response whose fluctuating outputs will create perturbations requiring probabilistic measures of resilience. When smart but uncontrollable resources fluctuate, Optimum Power Flow (OPF), routinely used by the electric power industry to dispatch controllable generation over control areas of transmission networks, can result in higher risks. Our Chance Constrained (CC) OPF corrects the problem and mitigates dangerous fluctuations with minimal changes in the current operational procedure. Assuming availability of a reliable forecast parameterizing the distribution function of the uncertain resources, our CC-OPF satisfies all the constraints with high probability while simultaneously minimizing the cost of economic dispatch. For linear (DC) modeling of power flows, and parametrization of the uncertainty through Gaussian distribution functions the CC-OPF turns into convex (conic) optimization, which allows efficient and scalable cutting-plane implementation. When estimates of the Gaussian parameters are imprecise we robustify CC-OPF deriving its data ambiguous and still scalable implementation.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Future Grids will integrate time-intermittent renewables and demand response whose fluctuating outputs will create perturbations requiring probabilistic measures of resilience. When smart but uncontrollable resources fluctuate, Optimum Power Flow (OPF), routinely used by the electric power industry to dispatch controllable generation over control areas of transmission networks, can result in higher risks. Our Chance Constrained (CC) OPF corrects the problem and mitigates dangerous fluctuations with minimal changes in the current operational procedure. Assuming availability of a reliable forecast parameterizing the distribution function of the uncertain resources, our CC-OPF satisfies all the constraints with high probability while simultaneously minimizing the cost of economic dispatch. For linear (DC) modeling of power flows, and parametrization of the uncertainty through Gaussian distribution functions the CC-OPF turns into convex (conic) optimization, which allows efficient and scalable cutting-plane implementation. When estimates of the Gaussian parameters are imprecise we robustify CC-OPF deriving its data ambiguous and still scalable implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网中概率不确定性的鲁棒建模:数据模糊机会约束的最优潮流
未来的电网将整合时断时续的可再生能源和需求响应,其波动的输出将产生扰动,需要对弹性进行概率测量。当智能但不可控的资源波动时,电力行业通常使用最优潮流(OPF)在输电网络的控制区域调度可控发电,这可能会导致更高的风险。我们的机会约束(CC) OPF通过对当前操作程序的最小更改纠正了这一问题并减轻了危险的波动。假设存在可靠的预测参数化不确定资源的分布函数,该CC-OPF在满足所有约束条件的同时高概率地使经济调度成本最小化。对于潮流的线性(DC)建模,以及通过高斯分布函数对不确定性进行参数化,CC-OPF转化为凸(圆锥)优化,从而实现高效和可扩展的切割平面。当高斯参数估计不精确时,我们对CC-OPF进行鲁棒化,使其数据模糊,并且仍然具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1