Condition assessment of power transformer using SVM based on DGA

Jagdeep Singh, P. Kumari, Kulraj Kaur, A. Swami
{"title":"Condition assessment of power transformer using SVM based on DGA","authors":"Jagdeep Singh, P. Kumari, Kulraj Kaur, A. Swami","doi":"10.1109/AIC-MITCSA.2016.7759957","DOIUrl":null,"url":null,"abstract":"The possibility of power transformer failure increases over the time as the age and rate of utilization increases. Since internal faults specially are the main cause of these failures, there are many ways and methods used to predict incipient fault and thus preventing the power transformer from failing by monitoring its condition. In oil immersed transformers, the DGA is used as one of the well-established tool to predict incipient faults occurring inside the body of power transformer. With already in existence of more than 5 known methods of DGA fault interpretation; there is the chance that all may give different conditions/results for the same sample. Using a combination of more than one of the methods and Support Vector Machine will result in increased accuracy of the interpretation and so reduces the uncertainty of the transformer condition monitoring.","PeriodicalId":315179,"journal":{"name":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC-MITCSA.2016.7759957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The possibility of power transformer failure increases over the time as the age and rate of utilization increases. Since internal faults specially are the main cause of these failures, there are many ways and methods used to predict incipient fault and thus preventing the power transformer from failing by monitoring its condition. In oil immersed transformers, the DGA is used as one of the well-established tool to predict incipient faults occurring inside the body of power transformer. With already in existence of more than 5 known methods of DGA fault interpretation; there is the chance that all may give different conditions/results for the same sample. Using a combination of more than one of the methods and Support Vector Machine will result in increased accuracy of the interpretation and so reduces the uncertainty of the transformer condition monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DGA的支持向量机电力变压器状态评估
随着电力变压器的使用年限和利用率的增加,电力变压器发生故障的可能性也随之增加。由于内部故障是这些故障的主要原因,因此有许多方法和方法可以通过监测电力变压器的状态来预测早期故障,从而防止电力变压器发生故障。在油浸式变压器中,DGA是一种成熟的预测变压器内部早期故障的工具。已有5种以上已知的DGA断层解释方法;对于同一样品,所有人可能会给出不同的条件/结果。将多种方法与支持向量机结合使用,可以提高解释的准确性,从而减少变压器状态监测的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Routing algorithm optimization for software defined network WAN Modeling, design and analysis of an induction heating coil for brazing process using FEM Feature extraction of brain event-related potentials using cubic spline technique Ontology based reasoning for solving passenger train optimization problem Checking the robustness of a PWM sliding mode controlled DC/DC buck-boost converter using its Matlab/Simulink model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1