Building Indonesian Music Dataset: Collection and Analysis

M. O. Pratama, Pamela Kareen, Ermatita
{"title":"Building Indonesian Music Dataset: Collection and Analysis","authors":"M. O. Pratama, Pamela Kareen, Ermatita","doi":"10.1109/ICIMCIS53775.2021.9699332","DOIUrl":null,"url":null,"abstract":"We introduce The Indonesian Music Dataset (IMD), a collection of audio features and text lyrics features for thousand Indonesian popular songs which has been developed for automatic music era classification and other classification tasks. Dataset collection consists of audio features represented by Spectrogram, Chroma Feature and Low-level audio features. The dataset also consists of lyric features in order to support multimodal tasks. Dataset is equipped with eras (year of publication) labels starting from '70 until the current era, mood labels from Valence-Arousal (Anger, Sadness, Happiness and Relax), and genre labels (Rock, Pop, Jazz). In this paper, we also present era, mood and genre prediction as an example of a dataset experiment for each modality (audio features and text lyrics features) that shows positive results using benchmarking models.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce The Indonesian Music Dataset (IMD), a collection of audio features and text lyrics features for thousand Indonesian popular songs which has been developed for automatic music era classification and other classification tasks. Dataset collection consists of audio features represented by Spectrogram, Chroma Feature and Low-level audio features. The dataset also consists of lyric features in order to support multimodal tasks. Dataset is equipped with eras (year of publication) labels starting from '70 until the current era, mood labels from Valence-Arousal (Anger, Sadness, Happiness and Relax), and genre labels (Rock, Pop, Jazz). In this paper, we also present era, mood and genre prediction as an example of a dataset experiment for each modality (audio features and text lyrics features) that shows positive results using benchmarking models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立印尼音乐数据集:收集与分析
我们介绍印度尼西亚音乐数据集(IMD),这是一个收集了数千首印度尼西亚流行歌曲的音频特征和文本歌词特征的集合,用于自动音乐时代分类和其他分类任务。数据集包括由谱图、色度特征和低级音频特征表示的音频特征。为了支持多模态任务,数据集还包含歌词特征。数据集配备了从1970年到当前时代的时代(出版年份)标签,从Valence-Arousal(愤怒,悲伤,快乐和放松)的情绪标签和流派标签(Rock, Pop, Jazz)。在本文中,我们还将时代,情绪和类型预测作为每个情态(音频特征和文本歌词特征)的数据集实验的示例,使用基准模型显示出积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Word Expansion using Synonyms in Indonesian Short Essay Auto Scoring Sentiment Analysis of COVID-19 Vaccines from Indonesian Tweets and News Headlines using Various Machine Learning Techniques One Data ASN Framework (ODAF) for Indonesian State Civil Apparatus Sentiment Analysis of Big Cities on The Island of Java in Indonesia from Twitter Data as A Recommender System Effect Of The Learning Rate, Hidden Layer, And Epoch In Lung Cancer Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1