Scale space texture analysis for face anti-spoofing

Z. Boulkenafet, Jukka Komulainen, Xiaoyi Feng, A. Hadid
{"title":"Scale space texture analysis for face anti-spoofing","authors":"Z. Boulkenafet, Jukka Komulainen, Xiaoyi Feng, A. Hadid","doi":"10.1109/ICB.2016.7550078","DOIUrl":null,"url":null,"abstract":"Face spoofing detection (i.e. face anti-spoofing) is emerging as a new research area and has already attracted a good number of works during the past five years. This paper addresses for the first time the key problem of the variation in the input image quality and resolution in face anti-spoofing. In contrast to most existing works aiming at extracting multiscale descriptors from the original face images, we derive a new multiscale space to represent the face images before texture feature extraction. The new multiscale space representation is derived through multiscale filtering. Three multiscale filtering methods are considered including Gaussian scale space, Difference of Gaussian scale space and Multiscale Retinex. Extensive experiments on three challenging and publicly available face anti-spoofing databases demonstrate the effectiveness of our proposed multiscale space representation in improving the performance of face spoofing detection based on gray-scale and color texture descriptors.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Face spoofing detection (i.e. face anti-spoofing) is emerging as a new research area and has already attracted a good number of works during the past five years. This paper addresses for the first time the key problem of the variation in the input image quality and resolution in face anti-spoofing. In contrast to most existing works aiming at extracting multiscale descriptors from the original face images, we derive a new multiscale space to represent the face images before texture feature extraction. The new multiscale space representation is derived through multiscale filtering. Three multiscale filtering methods are considered including Gaussian scale space, Difference of Gaussian scale space and Multiscale Retinex. Extensive experiments on three challenging and publicly available face anti-spoofing databases demonstrate the effectiveness of our proposed multiscale space representation in improving the performance of face spoofing detection based on gray-scale and color texture descriptors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸抗欺骗的尺度空间纹理分析
人脸欺骗检测(即人脸反欺骗)是一个新兴的研究领域,在过去的五年中已经吸引了大量的研究工作。本文首次解决了人脸防欺骗中输入图像质量和分辨率变化的关键问题。与大多数现有的从原始人脸图像中提取多尺度描述符的方法不同,我们在提取纹理特征之前推导了一个新的多尺度空间来表示人脸图像。通过多尺度滤波得到新的多尺度空间表示。考虑了高斯尺度空间、高斯尺度空间差分和多尺度Retinex三种多尺度滤波方法。在三个具有挑战性和公开可用的人脸抗欺骗数据库上进行的大量实验表明,我们提出的多尺度空间表示在提高基于灰度和颜色纹理描述符的人脸欺骗检测性能方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent fingerprint segmentation based on linear density Experimental results on multi-modal fusion of EEG-based personal verification algorithms Transferring deep representation for NIR-VIS heterogeneous face recognition TripleA: Accelerated accuracy-preserving alignment for iris-codes Reliable face anti-spoofing using multispectral SWIR imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1