Investigation on the performance of a new multiple choice strategy for PSO Algorithm in the task of large scale optimization problems

Michal Pluhacek, R. Šenkeřík, I. Zelinka
{"title":"Investigation on the performance of a new multiple choice strategy for PSO Algorithm in the task of large scale optimization problems","authors":"Michal Pluhacek, R. Šenkeřík, I. Zelinka","doi":"10.1109/CEC.2013.6557805","DOIUrl":null,"url":null,"abstract":"In this paper, a novel strategy for particle swarm optimization is presented and investigated over its ability to improve the performance of PSO algorithm in the task of large scale optimization problems. This proposed strategy alters the way the velocity of each particle is determined. Promising results of this innovative strategy are presented in the results section and briefly analyzed.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, a novel strategy for particle swarm optimization is presented and investigated over its ability to improve the performance of PSO algorithm in the task of large scale optimization problems. This proposed strategy alters the way the velocity of each particle is determined. Promising results of this innovative strategy are presented in the results section and briefly analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSO算法在大规模优化问题中一种新的选择策略的性能研究
本文提出了一种新的粒子群优化策略,并研究了其在大规模优化问题中改进粒子群算法性能的能力。这个提议的策略改变了确定每个粒子速度的方法。结果部分介绍了这一创新策略的有希望的结果,并对其进行了简要分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on two-step search based on PSO to improve convergence and diversity for Many-Objective Optimization Problems An evolutionary approach to the multi-objective pickup and delivery problem with time windows A new performance metric for user-preference based multi-objective evolutionary algorithms A new algorithm for reducing metaheuristic design effort Evaluation of gossip Vs. broadcast as communication strategies for multiple swarms solving MaOPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1