Modeling Protocol Offload for Message-oriented Communication

Patricia Gilfeather, A. Maccabe
{"title":"Modeling Protocol Offload for Message-oriented Communication","authors":"Patricia Gilfeather, A. Maccabe","doi":"10.1109/CLUSTR.2005.347069","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new, conceptual model that captures the benefits of protocol offload in the context of high performance computing systems. In contrast to the LAWS model, the extensible message-oriented offload model (EMO) emphasizes communication in terms of messages rather than flows. In contrast to the LogP model, EMO emphasizes the performance of the network protocol rather than the parallel algorithm. The extensible message-oriented offload model allows protocol developers to consider the tradeoffs and specifics associated with offloading protocol processing including the reduction in message latency along with benefits associated with reduction in overhead and improvements to throughput. We give an overview of the EMO model and show how our model can be mapped to the LAWS and LogP models. We also show how it can be used to analyze individual messages within TCP flows by contrasting full offload (TCP offload engines) with other approaches, e.g., interrupt coalescing and splintered TCP","PeriodicalId":255312,"journal":{"name":"2005 IEEE International Conference on Cluster Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2005.347069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we present a new, conceptual model that captures the benefits of protocol offload in the context of high performance computing systems. In contrast to the LAWS model, the extensible message-oriented offload model (EMO) emphasizes communication in terms of messages rather than flows. In contrast to the LogP model, EMO emphasizes the performance of the network protocol rather than the parallel algorithm. The extensible message-oriented offload model allows protocol developers to consider the tradeoffs and specifics associated with offloading protocol processing including the reduction in message latency along with benefits associated with reduction in overhead and improvements to throughput. We give an overview of the EMO model and show how our model can be mapped to the LAWS and LogP models. We also show how it can be used to analyze individual messages within TCP flows by contrasting full offload (TCP offload engines) with other approaches, e.g., interrupt coalescing and splintered TCP
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向消息通信的建模协议卸载
在本文中,我们提出了一个新的概念模型,该模型捕捉了高性能计算系统中协议卸载的好处。与LAWS模型相反,可扩展的面向消息的卸载模型(EMO)强调根据消息而不是流进行通信。与LogP模型相比,EMO强调网络协议的性能,而不是并行算法。可扩展的面向消息的卸载模型允许协议开发人员考虑与卸载协议处理相关的权衡和细节,包括减少消息延迟以及与减少开销和提高吞吐量相关的好处。我们给出了EMO模型的概述,并展示了如何将我们的模型映射到LAWS和LogP模型。我们还展示了如何通过对比完全卸载(TCP卸载引擎)与其他方法(例如,中断合并和分裂TCP)来分析TCP流中的单个消息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Effects of Interrupt Throttle Rate on Linux Clusters using Intel Gigabit Network Adapters A pipelined data-parallel algorithm for ILP Distributed Out-of-Core Preprocessing of Very Large Microscopy Images for Efficient Querying Grid and Cluster Matrix Computation with Persistent Storage and Out-of-core Programming A Cost/Benefit Estimating Service for Mapping Parallel Applications on Heterogeneous Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1