Parallelizing Multiple Linear Regression for Speed and Redundancy: An Empirical Study

Mingxian Xu, J. J. Miller, E. Wegman
{"title":"Parallelizing Multiple Linear Regression for Speed and Redundancy: An Empirical Study","authors":"Mingxian Xu, J. J. Miller, E. Wegman","doi":"10.1109/DMCC.1990.555395","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a parallel implementation of multiple linear regression. We discuss the multiple linear regression model. Traditionally parallelism has been used for either speed-up or redundancy (hence reliability). With stochastic data, by clever parsing and algorithm development, it is possible to achieve both speed and reliability enhancement. We demonstrate this with multiple linear regression. Other examples include kernel estimation and bootstrapping.","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.555395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The purpose of this paper is to present a parallel implementation of multiple linear regression. We discuss the multiple linear regression model. Traditionally parallelism has been used for either speed-up or redundancy (hence reliability). With stochastic data, by clever parsing and algorithm development, it is possible to achieve both speed and reliability enhancement. We demonstrate this with multiple linear regression. Other examples include kernel estimation and bootstrapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行多元线性回归的速度与冗余:实证研究
本文的目的是提出一个并行实现的多元线性回归。我们讨论了多元线性回归模型。传统上,并行性被用于加速或冗余(因此可靠性)。对于随机数据,通过巧妙的解析和算法开发,可以同时提高速度和可靠性。我们用多元线性回归证明了这一点。其他示例包括内核估计和引导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inner Product Computation in the Parallel One-Sided Jacobi Algorithm Experience with Concurrent Aggregates (CA): Implementation and Programming A Distributed Memory Implementation of SISAL Performance Results on the Intel Touchstone Gamma Prototype Quick Recovery of Embedded Structures in Hypercube Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1