What makes finite-state models more (or less) testable?

David Owen, T. Menzies, B. Cukic
{"title":"What makes finite-state models more (or less) testable?","authors":"David Owen, T. Menzies, B. Cukic","doi":"10.1109/ASE.2002.1115019","DOIUrl":null,"url":null,"abstract":"This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.","PeriodicalId":163532,"journal":{"name":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2002.1115019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
是什么让有限状态模型更(或更少)可测试?
本文研究了一个特定模型的细节如何影响搜索检测的有效性。我们发现,如果测试方法是固定的,我们可以识别或多或少可测试的软件类别。结合使用模型突变器和机器学习,我们发现我们可以分离出显著改变缺陷检测工具有效性的拓扑特征。更具体地说,我们表明,对于一个缺陷检测工具(一个随机搜索引擎)应用于一个特定的表示(有限状态机),我们可以将发现缺陷的平均几率从69%增加到91%。用于改变这些概率的方法是非常通用的,并且应该应用于应用于其他表示的其他缺陷检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assumption generation for software component verification Monitoring requirements: a case study Predicting software stability using case-based reasoning Process support for tools interoperability Combining and adapting software quality predictive models by genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1