Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking

L. Frenkel, M. Feder
{"title":"Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking","authors":"L. Frenkel, M. Feder","doi":"10.1109/ICASSP.1995.478481","DOIUrl":null,"url":null,"abstract":"We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.478481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变参数的递推估计最大化算法在多目标跟踪中的应用
研究了EM算法在已知目标数的经典多目标跟踪问题中的应用。传统算法的计算复杂度与目标数量呈指数关系,通常将问题分为定位阶段和跟踪阶段。新算法实现了线性依赖,并整合了这些租用阶段。利用目标的确定性和随机动态模型,提出了三种主要的优化准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1