4-D Scene Alignment in Surveillance Video

R. Wagner, Daniel E. Crispell, Patrick Feeney, J. Mundy
{"title":"4-D Scene Alignment in Surveillance Video","authors":"R. Wagner, Daniel E. Crispell, Patrick Feeney, J. Mundy","doi":"10.1109/AIPR47015.2019.9174582","DOIUrl":null,"url":null,"abstract":"Designing robust activity detectors for fixed camera surveillance video requires knowledge of the 3-D scene. This paper presents an automatic camera calibration process that provides a mechanism to reason about the spatial proximity between objects at different times. It combines a CNN-based camera pose estimator with a vertical scale provided by pedestrian observations to establish the 4-D scene geometry. Unlike some previous methods, the people do not need to be tracked nor do the head and feet need to be explicitly detected. It is robust to individual height variations and camera parameter estimation errors.","PeriodicalId":167075,"journal":{"name":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR47015.2019.9174582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Designing robust activity detectors for fixed camera surveillance video requires knowledge of the 3-D scene. This paper presents an automatic camera calibration process that provides a mechanism to reason about the spatial proximity between objects at different times. It combines a CNN-based camera pose estimator with a vertical scale provided by pedestrian observations to establish the 4-D scene geometry. Unlike some previous methods, the people do not need to be tracked nor do the head and feet need to be explicitly detected. It is robust to individual height variations and camera parameter estimation errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监控视频中的4d场景对齐
为固定摄像机监控视频设计健壮的活动检测器需要了解三维场景。本文提出了一种自动相机标定过程,该过程提供了一种机制来推断不同时间目标之间的空间接近性。它结合了基于cnn的相机姿态估计器和行人观测提供的垂直尺度来建立4-D场景几何。与以前的一些方法不同,人们不需要被跟踪,也不需要明确地检测头部和脚。它对个体高度变化和相机参数估计误差具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Segmentation of Nucleus, Cytoplasm and Background of Cervical Cells from Pap-smear Images using a Trainable Pixel Level Classifier Improving Industrial Safety Gear Detection through Re-ID conditioned Detector Internet of Things Anomaly Detection using Machine Learning Evaluation of Generative Adversarial Network Performance Based on Direct Analysis of Generated Images GLSNet: Global and Local Streams Network for 3D Point Cloud Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1