Generative Adversarial Neural Network for Creating Photorealistic Images

Oleksandr Striuk, Y. Kondratenko, I. Sidenko, Alla Vorobyova
{"title":"Generative Adversarial Neural Network for Creating Photorealistic Images","authors":"Oleksandr Striuk, Y. Kondratenko, I. Sidenko, Alla Vorobyova","doi":"10.1109/ATIT50783.2020.9349326","DOIUrl":null,"url":null,"abstract":"This paper is focused on studying the Generative Adversarial Neural Network (GAN or GANN) as an implement for creating diverse functional samples, particularly photorealistic images (graphic, molecular, etc.). The paper considers available existing methods and approaches for designing and algorithmization the current class of networks, also the effectiveness of different types of formed architectures with various combinations using the example of handwritten digits creation as one of the photorealistic images. The paper examines an applied value of the generative adversarial neural network as an implementation of the complex paradigm of artificial intelligence. The results of the study demonstrate the efficiency of the GAN technology in designing samples of various types and categories of complexity","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is focused on studying the Generative Adversarial Neural Network (GAN or GANN) as an implement for creating diverse functional samples, particularly photorealistic images (graphic, molecular, etc.). The paper considers available existing methods and approaches for designing and algorithmization the current class of networks, also the effectiveness of different types of formed architectures with various combinations using the example of handwritten digits creation as one of the photorealistic images. The paper examines an applied value of the generative adversarial neural network as an implementation of the complex paradigm of artificial intelligence. The results of the study demonstrate the efficiency of the GAN technology in designing samples of various types and categories of complexity
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成对抗神经网络创建逼真的图像
本文的重点是研究生成对抗神经网络(GAN或GANN)作为创建各种功能样本的工具,特别是逼真的图像(图形,分子等)。本文考虑了现有的网络设计和算法的方法和途径,以及不同类型的结构与各种组合的有效性,并以手写体数字创建为例作为逼真图像之一。本文探讨了生成对抗神经网络作为人工智能复杂范式的实现的应用价值。研究结果证明了GAN技术在设计各种复杂类型和类别的样品方面的效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and Testing of Dependencies Between Input and Output Data in the Implementation of Multi-Digit Algorithms in a Parallel Computational Model Information and Encoding Theory Methods of Security Authentication and Authorization into Informationals Systems An Approach to Better Portable Graphics (BPG) Compression with Providing a Desired Quality Static Analysis of Resource Consumption in Programs Using Rewriting Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1