Optimizing lineage information in genetic algorithms for producing superior models

G. Boetticher, J. Rudisill
{"title":"Optimizing lineage information in genetic algorithms for producing superior models","authors":"G. Boetticher, J. Rudisill","doi":"10.1109/IRI.2008.4583049","DOIUrl":null,"url":null,"abstract":"A lot of research in the area of genetic algorithms (GA) is applied, but little research examines the impact of lineage information in optimizing a GA. Normally, researchers consider primarily elitism, an approach which carries only a very small fixed subset of the population to the next generation, as a lineage strategy. This paper investigates several different lineage percentages (what percent of the population to carry forward) to determine an ideal percentage or range from improving the accuracy of a GA. Several experiments are performed, and all results are statistically validated.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A lot of research in the area of genetic algorithms (GA) is applied, but little research examines the impact of lineage information in optimizing a GA. Normally, researchers consider primarily elitism, an approach which carries only a very small fixed subset of the population to the next generation, as a lineage strategy. This paper investigates several different lineage percentages (what percent of the population to carry forward) to determine an ideal percentage or range from improving the accuracy of a GA. Several experiments are performed, and all results are statistically validated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化遗传算法中的谱系信息以产生优越的模型
在遗传算法领域有大量的研究,但很少有研究考察谱系信息对遗传算法优化的影响。通常,研究人员主要认为精英主义是一种谱系策略,这种方法只将人口中非常小的固定子集传递给下一代。本文研究了几种不同的谱系百分比(要继承的人口百分比),以确定一个理想的百分比或范围,以提高遗传算法的准确性。进行了多次实验,所有结果都得到了统计验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An unsupervised protein sequences clustering algorithm using functional domain information FACT: A fusion architecture with contract templates for semantic and syntactic integration Data component based management of reservoir simulation models RFID composite event definition and detection Analysis methodology for project design utilizing UML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1