A posteriori error estimates for the Crank-Nicolson method: application to parabolic partial differential equations with small random input data

N. Shravani, Gujji Murali, †. MohanReddy, §. MichaelVynnycky
{"title":"A posteriori error estimates for the Crank-Nicolson method: application to parabolic partial differential equations with small random input data","authors":"N. Shravani, Gujji Murali, †. MohanReddy, §. MichaelVynnycky","doi":"10.23967/admos.2023.029","DOIUrl":null,"url":null,"abstract":"In this article, we present residual-based a posteriori error estimates for the parabolic partial differential equation (PDE) with small random input data in the L 2 P (Ω; L 2 (0 , T ; H 1 ( D )))-norm, where (Ω , F , P ) is a complete probability space, D is the physical domain, T > 0 is the final time. Such a class of PDEs arises due to a lack of complete understanding of the physical model. To this end, the perturbation technique [2019, Arch. Comput. Methods Eng., 26, pp. 1313-1377] is exploited to express the exact random solution in terms of the power series with respect to the uncertainty parameter, whence we obtain decoupled deterministic problems. Each problem is then discretized in space by the finite element method and advanced in time by the Crank-Nicolson scheme. Quadratic reconstructions are introduced to obtain optimal bounds in the temporal direction. The work generalizes the isotropic results obtained in [2009, SIAM J. Sci. Comput., 31, pp. 2757-2783] for the deterministic parabolic PDEs to the parabolic PDE with small random input data. Numerical results demonstrate the effectiveness of the bounds.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present residual-based a posteriori error estimates for the parabolic partial differential equation (PDE) with small random input data in the L 2 P (Ω; L 2 (0 , T ; H 1 ( D )))-norm, where (Ω , F , P ) is a complete probability space, D is the physical domain, T > 0 is the final time. Such a class of PDEs arises due to a lack of complete understanding of the physical model. To this end, the perturbation technique [2019, Arch. Comput. Methods Eng., 26, pp. 1313-1377] is exploited to express the exact random solution in terms of the power series with respect to the uncertainty parameter, whence we obtain decoupled deterministic problems. Each problem is then discretized in space by the finite element method and advanced in time by the Crank-Nicolson scheme. Quadratic reconstructions are introduced to obtain optimal bounds in the temporal direction. The work generalizes the isotropic results obtained in [2009, SIAM J. Sci. Comput., 31, pp. 2757-2783] for the deterministic parabolic PDEs to the parabolic PDE with small random input data. Numerical results demonstrate the effectiveness of the bounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crank-Nicolson方法的后检误差估计:应用于小随机输入数据的抛物型偏微分方程
在本文中,我们提出了基于残差的后验误差估计的抛物型偏微分方程(PDE)与小随机输入数据在l2 P (Ω;l2 (0, t;H 1 (D))-范数,其中(Ω, F, P)为完全概率空间,D为物理域,T > 0为最终时间。这类偏微分方程的产生是由于缺乏对物理模型的完全理解。为此,摄动技术[2019,Arch。第一版。Eng方法。, 26, pp. 1313-1377]利用幂级数对不确定性参数表示精确随机解,由此我们得到解耦确定性问题。然后通过有限元方法在空间上离散每个问题,并通过Crank-Nicolson格式在时间上推进每个问题。在时间方向上引入二次重构以获得最优边界。本文推广了[2009,SIAM J. Sci.]第一版。确定性抛物型偏微分方程与小随机输入数据的抛物型偏微分方程[j]。数值结果证明了该边界的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1