Towards fine-grained urban traffic knowledge extraction using mobile sensing

X. Ban, M. Gruteser
{"title":"Towards fine-grained urban traffic knowledge extraction using mobile sensing","authors":"X. Ban, M. Gruteser","doi":"10.1145/2346496.2346514","DOIUrl":null,"url":null,"abstract":"We introduce our vision for mining fine-grained urban traffic knowledge from mobile sensing, especially GPS location traces. Beyond characterizing human mobility patterns and measuring traffic congestion, we show how mobile sensing can also reveal details such as intersection performance statistics that are useful for optimizing the timing of a traffic signal. Realizing such applications requires co-designing privacy protection algorithms and novel traffic modeling techniques so that the needs for privacy preserving and traffic modeling can be simultaneously satisfied. We explore privacy algorithms based on the virtual trip lines (VTL) concept to regulate where and when the mobile data should be collected. The traffic modeling techniques feature an integration of traffic principles and learning/optimization techniques. The proposed methods are illustrated using two case studies for extracting traffic knowledge for urban signalized intersection.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce our vision for mining fine-grained urban traffic knowledge from mobile sensing, especially GPS location traces. Beyond characterizing human mobility patterns and measuring traffic congestion, we show how mobile sensing can also reveal details such as intersection performance statistics that are useful for optimizing the timing of a traffic signal. Realizing such applications requires co-designing privacy protection algorithms and novel traffic modeling techniques so that the needs for privacy preserving and traffic modeling can be simultaneously satisfied. We explore privacy algorithms based on the virtual trip lines (VTL) concept to regulate where and when the mobile data should be collected. The traffic modeling techniques feature an integration of traffic principles and learning/optimization techniques. The proposed methods are illustrated using two case studies for extracting traffic knowledge for urban signalized intersection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动传感的细粒度城市交通知识提取
我们介绍了从移动传感中挖掘细粒度城市交通知识的愿景,特别是GPS定位痕迹。除了描述人类移动模式和测量交通拥堵之外,我们还展示了移动传感如何揭示诸如十字路口性能统计等细节,这些细节对于优化交通信号的时间非常有用。实现这些应用需要共同设计隐私保护算法和新颖的流量建模技术,从而同时满足隐私保护和流量建模的需求。我们探索了基于虚拟行程线(VTL)概念的隐私算法,以规范移动数据的收集地点和时间。交通建模技术的特点是交通原理和学习/优化技术的集成。以两个城市信号交叉口的交通知识提取为例,对所提出的方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of urban commuting patterns using cellphone network data Sensing places' life to make city smarter Exploration of ground truth from raw GPS data Mining traffic incidents to forecast impact Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1