Enhancing static biometric signature verification using Speeded-Up Robust Features

R. Guest, O. Miguel-Hurtado
{"title":"Enhancing static biometric signature verification using Speeded-Up Robust Features","authors":"R. Guest, O. Miguel-Hurtado","doi":"10.1109/CCST.2012.6393561","DOIUrl":null,"url":null,"abstract":"Automatic biometric static signature verification performs a comparison between signature images (or preformed templates) to verify authenticity. Although widely recognised that performance enhancement can be achieved when using dynamic features, which use temporal/ constructional information, alongside static features, this scenario requires the capture of signatures using specialist sample equipment such a tablet device. The vast majority of (legacy) signatures across a range of important domains, including banking, legal and forensic applications, are in a static format. In this paper we use the Speeded-Up Robust Features (SURF) image registration technique in a novel application to static signature image matching. We use genuine and skilled forgery signatures from the GPDS960 dataset as test data and across a range of enrolment and SURF point distance configurations. The best performance from our method was 11.5% equal error rate by employing a product distance combination of 5 enrolment templates using the lowest 50% of returned registration-point distances. This encouraging result is in line with the current state-of-the-art performance.","PeriodicalId":405531,"journal":{"name":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2012.6393561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Automatic biometric static signature verification performs a comparison between signature images (or preformed templates) to verify authenticity. Although widely recognised that performance enhancement can be achieved when using dynamic features, which use temporal/ constructional information, alongside static features, this scenario requires the capture of signatures using specialist sample equipment such a tablet device. The vast majority of (legacy) signatures across a range of important domains, including banking, legal and forensic applications, are in a static format. In this paper we use the Speeded-Up Robust Features (SURF) image registration technique in a novel application to static signature image matching. We use genuine and skilled forgery signatures from the GPDS960 dataset as test data and across a range of enrolment and SURF point distance configurations. The best performance from our method was 11.5% equal error rate by employing a product distance combination of 5 enrolment templates using the lowest 50% of returned registration-point distances. This encouraging result is in line with the current state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用加速鲁棒特征增强静态生物特征签名验证
自动生物特征静态签名验证通过对比签名图像(或预成型模板)来验证签名的真实性。虽然人们普遍认为,在使用动态特征(使用时间/结构信息)和静态特征时可以实现性能增强,但这种情况需要使用专业样本设备(如平板设备)捕获签名。在一系列重要领域(包括银行、法律和取证应用程序)中,绝大多数(遗留)签名都采用静态格式。本文将加速鲁棒特征(SURF)图像配准技术应用于静态签名图像匹配。我们使用来自GPDS960数据集的真实和熟练的伪造签名作为测试数据,并在一系列注册和SURF点距离配置中使用。通过使用返回的注册点距离的最低50%,使用5个注册模板的产品距离组合,我们的方法的最佳性能为11.5%的相等错误率。这一令人鼓舞的结果符合目前最先进的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Department of Defense Instruction 8500.2 “Information Assurance (IA) Implementation:” A retrospective Attack tree-based evaluation of physical protection systems vulnerability Super-resolution processing of the partial pictorial image of the single pictorial image which eliminated artificiality A concept of automated vulnerability search in contactless communication applications Working towards an international ANPR Standard — An initial investigation into the UK standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1