Super-resolution from internet-scale scene matching

Libin Sun, James Hays
{"title":"Super-resolution from internet-scale scene matching","authors":"Libin Sun, James Hays","doi":"10.1109/ICCPhot.2012.6215221","DOIUrl":null,"url":null,"abstract":"In this paper, we present a highly data-driven approach to the task of single image super-resolution. Super-resolution is a challenging problem due to its massively under-constrained nature - for any low-resolution input there are numerous high-resolution possibilities. Our key observation is that, even with extremely low-res input images, we can use global scene descriptors and Internet-scale image databases to find similar scenes which provide ideal example textures to constrain the image upsampling problem. We quantitatively show that the statistics of scene matches are more predictive than internal image statistics for the super-resolution task. Finally, we build on recent patch-based texture transfer techniques to hallucinate texture detail and compare our super-resolution with other recent methods.","PeriodicalId":169984,"journal":{"name":"2012 IEEE International Conference on Computational Photography (ICCP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPhot.2012.6215221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

Abstract

In this paper, we present a highly data-driven approach to the task of single image super-resolution. Super-resolution is a challenging problem due to its massively under-constrained nature - for any low-resolution input there are numerous high-resolution possibilities. Our key observation is that, even with extremely low-res input images, we can use global scene descriptors and Internet-scale image databases to find similar scenes which provide ideal example textures to constrain the image upsampling problem. We quantitatively show that the statistics of scene matches are more predictive than internal image statistics for the super-resolution task. Finally, we build on recent patch-based texture transfer techniques to hallucinate texture detail and compare our super-resolution with other recent methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自互联网规模场景匹配的超分辨率
在本文中,我们提出了一种高度数据驱动的方法来完成单幅图像的超分辨率任务。超分辨率是一个具有挑战性的问题,因为它具有大量的约束性质——对于任何低分辨率的输入,都有许多高分辨率的可能性。我们的关键观察是,即使是极低分辨率的输入图像,我们也可以使用全局场景描述符和互联网规模的图像数据库来找到提供理想示例纹理的类似场景,以约束图像上采样问题。我们定量地表明,在超分辨率任务中,场景匹配统计比内部图像统计更具预测性。最后,我们在最近的基于补丁的纹理转移技术的基础上建立幻觉纹理细节,并将我们的超分辨率与其他最近的方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrast preserving decolorization Fast reactive control for illumination through rain and snow Diffuse structured light CS-MUVI: Video compressive sensing for spatial-multiplexing cameras Calibration-free rolling shutter removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1