Learning a Bi-Stochastic Data Similarity Matrix

Fei Wang, Ping Li, A. König
{"title":"Learning a Bi-Stochastic Data Similarity Matrix","authors":"Fei Wang, Ping Li, A. König","doi":"10.1109/ICDM.2010.141","DOIUrl":null,"url":null,"abstract":"An idealized clustering algorithm seeks to learn a cluster-adjacency matrix such that, if two data points belong to the same cluster, the corresponding entry would be 1, otherwise the entry would be 0. This integer (1/0) constraint makes it difficult to find the optimal solution. We propose a relaxation on the cluster-adjacency matrix, by deriving a bi-stochastic matrix from a data similarity (e.g., kernel) matrix according to the Bregman divergence. Our general method is named the {\\em Bregmanian Bi-Stochastication} (BBS) algorithm. We focus on two popular choices of the Bregman divergence: the Euclidian distance and the KL divergence. Interestingly, the BBS algorithm using the KL divergence is equivalent to the Sinkhorn-Knopp (SK) algorithm for deriving bi-stochastic matrices. We show that the BBS algorithm using the Euclidian distance is closely related to the relaxed $k$-means clustering and can often produce noticeably superior clustering results than the SK algorithm (and other algorithms such as Normalized Cut), through extensive experiments on public data sets.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

An idealized clustering algorithm seeks to learn a cluster-adjacency matrix such that, if two data points belong to the same cluster, the corresponding entry would be 1, otherwise the entry would be 0. This integer (1/0) constraint makes it difficult to find the optimal solution. We propose a relaxation on the cluster-adjacency matrix, by deriving a bi-stochastic matrix from a data similarity (e.g., kernel) matrix according to the Bregman divergence. Our general method is named the {\em Bregmanian Bi-Stochastication} (BBS) algorithm. We focus on two popular choices of the Bregman divergence: the Euclidian distance and the KL divergence. Interestingly, the BBS algorithm using the KL divergence is equivalent to the Sinkhorn-Knopp (SK) algorithm for deriving bi-stochastic matrices. We show that the BBS algorithm using the Euclidian distance is closely related to the relaxed $k$-means clustering and can often produce noticeably superior clustering results than the SK algorithm (and other algorithms such as Normalized Cut), through extensive experiments on public data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习双随机数据相似矩阵
理想的聚类算法寻求学习一个聚类邻接矩阵,这样,如果两个数据点属于同一个聚类,对应的条目将为1,否则条目将为0。这个整数(1/0)约束使得很难找到最优解。我们根据Bregman散度从数据相似度(如核)矩阵中导出双随机矩阵,提出了簇邻接矩阵的松弛。我们的一般方法被命名为{\em Bregmanian bi - randomtication} (BBS)算法。我们重点讨论了布雷格曼散度的两种常用选择:欧几里得距离和KL散度。有趣的是,使用KL散度的BBS算法等价于导出双随机矩阵的Sinkhorn-Knopp (SK)算法。通过在公共数据集上的大量实验,我们表明使用欧几里得距离的BBS算法与放松的$k$-means聚类密切相关,并且通常可以产生明显优于SK算法(以及其他算法,如归一化切割)的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Probabilistic Matrix Factorizations for Collaborative Filtering MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model Finding Local Anomalies in Very High Dimensional Space Efficient Probabilistic Latent Semantic Analysis with Sparsity Control Enhancing Single-Objective Projective Clustering Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1