{"title":"PrivOpt: an intrinsically private distributed optimization algorithm","authors":"Amir-Salar Esteki, Solmaz S. Kia","doi":"10.23919/ACC53348.2022.9867222","DOIUrl":null,"url":null,"abstract":"A critical factor for expanding the adoption of networked solutions is ensuring local data privacy of in-network agents implementing a distributed algorithm. In this paper, we consider privacy preservation in the distributed optimization problem in the sense that local cost parameters should not be revealed. Current approaches to privacy preservation normally propose methods that sacrifice exact convergence or increase communication overhead. We propose PrivOpt, an intrinsically private distributed optimization algorithm that converges exponentially fast without any convergence error or using extra communication channels. We show that when the number of the parameters of the local cost is greater than the dimension of the decision variable of the problem, no malicious agent, even if it has access to all transmitted-in and -out messages in the network, can obtain local cost parameters of other agents. As an application study, we show how our proposed PrivOpt algorithm can be used to solve an optimal resource allocation problem with the guarantees that the local cost parameters of all the agents stay private.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A critical factor for expanding the adoption of networked solutions is ensuring local data privacy of in-network agents implementing a distributed algorithm. In this paper, we consider privacy preservation in the distributed optimization problem in the sense that local cost parameters should not be revealed. Current approaches to privacy preservation normally propose methods that sacrifice exact convergence or increase communication overhead. We propose PrivOpt, an intrinsically private distributed optimization algorithm that converges exponentially fast without any convergence error or using extra communication channels. We show that when the number of the parameters of the local cost is greater than the dimension of the decision variable of the problem, no malicious agent, even if it has access to all transmitted-in and -out messages in the network, can obtain local cost parameters of other agents. As an application study, we show how our proposed PrivOpt algorithm can be used to solve an optimal resource allocation problem with the guarantees that the local cost parameters of all the agents stay private.