Online identification of nonlinear system in the Reproducing Kernel Hilbert Space using SVDKPCA method

O. Taouali, I. Elaissi, H. Messaoud
{"title":"Online identification of nonlinear system in the Reproducing Kernel Hilbert Space using SVDKPCA method","authors":"O. Taouali, I. Elaissi, H. Messaoud","doi":"10.1109/CCCA.2011.6031191","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the SVD technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the SVD technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVDKPCA方法的可再生核Hilbert空间非线性系统在线辨识
提出了一种基于再现核希尔伯特空间(RKHS)的非线性系统在线辨识的新方法。提出的SVD- kpca方法利用SVD技术更新主成分。然后,我们使用简化核主成分分析(RKPCA)来接近主成分,这些主成分代表了KPCA方法所选择的观测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct torque fuzzy controlled induction machine drive using an optimized extended Kalman filter High order sliding mode control for real-time ramp metering PID controller tuning for network delayed motion control Performance of conventional receiver in a CDMA MIMO system using non classical spread spectrum sequences Lorenz dominance based metaheuristic to solve a hybrid flowshop scheduling problem with sequence dependent setup times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1