Fault-tolerant Deep Learning using Regularization

Biresh Kumar Joardar, Aqeeb Iqbal Arka, J. Doppa, P. Pande
{"title":"Fault-tolerant Deep Learning using Regularization","authors":"Biresh Kumar Joardar, Aqeeb Iqbal Arka, J. Doppa, P. Pande","doi":"10.1145/3508352.3561120","DOIUrl":null,"url":null,"abstract":"Resistive random-access memory has become one of the most popular choices of hardware implementation for machine learning application workloads. However, these devices exhibit non-ideal behavior, which presents a challenge towards widespread adoption. Training/inferencing on these faulty devices can lead to poor prediction accuracy. However, existing fault tolerant methods are associated with high implementation overheads. In this paper, we present some new directions for solving reliability issues using software solutions. These software-based methods are inherent in deep learning training/inferencing, and they can also be used to address hardware reliability issues as well. These methods prevent accuracy drop during training/inferencing due to unreliable ReRAMs and are associated with lower area and power overheads.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive random-access memory has become one of the most popular choices of hardware implementation for machine learning application workloads. However, these devices exhibit non-ideal behavior, which presents a challenge towards widespread adoption. Training/inferencing on these faulty devices can lead to poor prediction accuracy. However, existing fault tolerant methods are associated with high implementation overheads. In this paper, we present some new directions for solving reliability issues using software solutions. These software-based methods are inherent in deep learning training/inferencing, and they can also be used to address hardware reliability issues as well. These methods prevent accuracy drop during training/inferencing due to unreliable ReRAMs and are associated with lower area and power overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正则化的容错深度学习
电阻式随机存取存储器已经成为机器学习应用程序工作负载的最流行的硬件实现选择之一。然而,这些设备表现出不理想的行为,这对广泛采用提出了挑战。在这些有缺陷的设备上进行训练/推理可能导致预测准确性较差。然而,现有的容错方法与较高的实现开销相关。在本文中,我们提出了使用软件解决方案解决可靠性问题的一些新方向。这些基于软件的方法是深度学习训练/推理所固有的,它们也可以用于解决硬件可靠性问题。这些方法可以防止在训练/推理过程中由于reram不可靠而导致的准确性下降,并且可以降低面积和功耗开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1