Learning Similarity-Preserving Representations of Brain Structure-Function Coupling

Yang Li, G. Mateos
{"title":"Learning Similarity-Preserving Representations of Brain Structure-Function Coupling","authors":"Yang Li, G. Mateos","doi":"10.23919/eusipco55093.2022.9909566","DOIUrl":null,"url":null,"abstract":"Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some of the brain's organizing principles at the system level. In this direction, we develop a supervised graph representation learning framework to model the relationship between brain structural connectivity (SC) and functional connectivity (FC) via a graph encoder-decoder system. Specifically, we propose a Siamese network architecture equipped with graph convolutional encoders to learn graph (i.e., subject)-level embeddings that preserve application-dependent similarity measures between brain networks. This way, we effectively increase the number of training samples and bring in the flexibility to incorporate additional prior information via the prescribed target graph-level distance. While information on the brain structure-function coupling is implicitly distilled via reconstruction of brain FC from SC, our model also manages to learn representations that preserve the similarity between input graphs. The superior discriminative power of the learnt representations is demonstrated in downstream tasks including subject classification and visualization. All in all, this work advocates the prospect of leveraging learnt graph-level, similarity-preserving embeddings for brain network analysis, by bringing to bear standard tools of metric data analysis.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some of the brain's organizing principles at the system level. In this direction, we develop a supervised graph representation learning framework to model the relationship between brain structural connectivity (SC) and functional connectivity (FC) via a graph encoder-decoder system. Specifically, we propose a Siamese network architecture equipped with graph convolutional encoders to learn graph (i.e., subject)-level embeddings that preserve application-dependent similarity measures between brain networks. This way, we effectively increase the number of training samples and bring in the flexibility to incorporate additional prior information via the prescribed target graph-level distance. While information on the brain structure-function coupling is implicitly distilled via reconstruction of brain FC from SC, our model also manages to learn representations that preserve the similarity between input graphs. The superior discriminative power of the learnt representations is demonstrated in downstream tasks including subject classification and visualization. All in all, this work advocates the prospect of leveraging learnt graph-level, similarity-preserving embeddings for brain network analysis, by bringing to bear standard tools of metric data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑结构-功能耦合的学习保持相似性表征
网络神经科学在图信号处理方面的进步为整合大脑结构和功能提供了一条独特的途径,其目标是在系统层面揭示大脑的一些组织原则。在这个方向上,我们开发了一个监督图表示学习框架,通过一个图编码器-解码器系统来模拟大脑结构连接(SC)和功能连接(FC)之间的关系。具体来说,我们提出了一个带有图卷积编码器的Siamese网络架构,以学习图(即主题)级嵌入,从而保留脑网络之间依赖于应用的相似性度量。通过这种方式,我们有效地增加了训练样本的数量,并通过规定的目标图级距离引入了附加先验信息的灵活性。虽然关于大脑结构-功能耦合的信息是通过从SC中重建大脑FC隐含地提取出来的,但我们的模型还设法学习了保留输入图之间相似性的表示。学习表征在主题分类和可视化等下游任务中表现出较强的判别能力。总而言之,这项工作提倡通过引入度量数据分析的标准工具,利用习得的图级、保持相似性的嵌入来进行大脑网络分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1