Deep Representation Learning for Metadata Verification

Bor-Chun Chen, L. Davis
{"title":"Deep Representation Learning for Metadata Verification","authors":"Bor-Chun Chen, L. Davis","doi":"10.1109/WACVW.2019.00019","DOIUrl":null,"url":null,"abstract":"Verifying the authenticity of a given image is an emerging topic in media forensics research. Many current works focus on content manipulation detection, which aims to detect possible alteration in the image content. However, tampering might not only occur in the image content itself, but also in the metadata associated with the image, such as timestamp, geo-tag, and captions. We address metadata verification, aiming to verify the authenticity of the metadata associated with the image, using a deep representation learning approach. We propose a deep neural network called Attentive Bilinear Convolutional Neural Networks (AB-CNN) that learns appropriate representation for metadata verification. AB-CNN address several common challenges in verifying a specific type of metadata – event (i.e. time and places), including lack of training data, finegrained differences between distinct events, and diverse visual content within the same event. Experimental results on three different datasets show that the proposed model can provide a substantial improvement over the baseline method.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Verifying the authenticity of a given image is an emerging topic in media forensics research. Many current works focus on content manipulation detection, which aims to detect possible alteration in the image content. However, tampering might not only occur in the image content itself, but also in the metadata associated with the image, such as timestamp, geo-tag, and captions. We address metadata verification, aiming to verify the authenticity of the metadata associated with the image, using a deep representation learning approach. We propose a deep neural network called Attentive Bilinear Convolutional Neural Networks (AB-CNN) that learns appropriate representation for metadata verification. AB-CNN address several common challenges in verifying a specific type of metadata – event (i.e. time and places), including lack of training data, finegrained differences between distinct events, and diverse visual content within the same event. Experimental results on three different datasets show that the proposed model can provide a substantial improvement over the baseline method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元数据验证的深度表示学习
验证给定图像的真实性是媒体取证研究中的一个新兴课题。目前的许多工作都集中在内容操作检测上,目的是检测图像内容可能发生的变化。但是,篡改不仅可能发生在图像内容本身,还可能发生在与图像相关的元数据中,例如时间戳、地理标记和标题。我们解决元数据验证,旨在验证与图像相关的元数据的真实性,使用深度表示学习方法。我们提出了一种深度神经网络,称为细心双线性卷积神经网络(AB-CNN),它可以学习适当的元数据验证表示。AB-CNN在验证特定类型的元数据事件(即时间和地点)时解决了几个常见的挑战,包括缺乏训练数据,不同事件之间的细粒度差异以及同一事件内的不同视觉内容。在三个不同数据集上的实验结果表明,该模型比基线方法有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can Liveness Be Automatically Detected from Latent Fingerprints? Novel Activities Detection Algorithm in Extended Videos Exploring Automatic Face Recognition on Match Performance and Gender Bias for Children MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation Sponsors and Corporate Donors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1