Inflatable antenna for CubeSat: A new spherical design for increased X-band gain

A. Babuscia, J. Sauder, A. Chandra, J. Thangavelautham, L. Feruglio, N. Bienert
{"title":"Inflatable antenna for CubeSat: A new spherical design for increased X-band gain","authors":"A. Babuscia, J. Sauder, A. Chandra, J. Thangavelautham, L. Feruglio, N. Bienert","doi":"10.1109/AERO.2017.7943897","DOIUrl":null,"url":null,"abstract":"Interplanetary1 CubeSats and small satellites have potential to provide means to explore space and to perform science in a more affordable way. As the goals for these spacecraft become more ambitious in space exploration, the communication systems currently implemented will need to be improved to support those missions. One of the bottlenecks is the antennas' size, due to the close relation between antenna gain and dimensions. Hence, a possible solution is to develop inflatable antennas which can be packaged efficiently, occupying a small amount of space, and they can provide, once deployed, large dish dimension and correspondent gain. A prototype of a 1 m inflatable antenna for X-Band has been developed in a joint effort between JPL and ASU. After initial photogrammetry tests and radiation tests, it was discovered that the design was not able to meet the required gain. As a result, a new design, based on a spherical inflatable membrane, is proposed. This new design will allow reaching a more stable inflatable surface, hence improving the electromagnetic performance. This paper will detail the principle challenges in developing this new antenna focusing on: design, EM analysis, fabrication and tests.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"38 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Interplanetary1 CubeSats and small satellites have potential to provide means to explore space and to perform science in a more affordable way. As the goals for these spacecraft become more ambitious in space exploration, the communication systems currently implemented will need to be improved to support those missions. One of the bottlenecks is the antennas' size, due to the close relation between antenna gain and dimensions. Hence, a possible solution is to develop inflatable antennas which can be packaged efficiently, occupying a small amount of space, and they can provide, once deployed, large dish dimension and correspondent gain. A prototype of a 1 m inflatable antenna for X-Band has been developed in a joint effort between JPL and ASU. After initial photogrammetry tests and radiation tests, it was discovered that the design was not able to meet the required gain. As a result, a new design, based on a spherical inflatable membrane, is proposed. This new design will allow reaching a more stable inflatable surface, hence improving the electromagnetic performance. This paper will detail the principle challenges in developing this new antenna focusing on: design, EM analysis, fabrication and tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于立方体卫星的充气天线:一种新的球形设计,用于增加x波段增益
行星际立方体卫星和小型卫星有潜力以更经济实惠的方式提供探索空间和开展科学研究的手段。随着这些航天器在太空探索中的目标变得更加雄心勃勃,目前实施的通信系统将需要改进以支持这些任务。其中一个瓶颈是天线的尺寸,因为天线的增益与尺寸密切相关。因此,一种可能的解决方案是开发可充气天线,这种天线可以有效地封装,占用很少的空间,一旦部署,就可以提供大的天线尺寸和相应的增益。在喷气推进实验室和亚利桑那州立大学的共同努力下,研制出了用于x波段的1米充气天线的原型。经过最初的摄影测量测试和辐射测试,发现该设计无法满足所需的增益。因此,提出了一种基于球形充气膜的新型设计方案。这种新设计将允许达到更稳定的充气表面,从而提高电磁性能。本文将详细介绍开发这种新型天线的主要挑战,重点是:设计,EM分析,制造和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1