A pedestrian tracking algorithm based on background unrelated head detection

Yibing Zhang, T. Fan
{"title":"A pedestrian tracking algorithm based on background unrelated head detection","authors":"Yibing Zhang, T. Fan","doi":"10.1049/CP.2017.0128","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that pedestrian tracking algorithm is prone to target tracking error in complex background, this paper proposes a pedestrian tracking algorithm based on human head detection to adapt to pedestrian tracking in many complex scenes. Firstly, the foreground segmentation technique is used to extract the motion foreground quickly. In the Adaboost classifier, the human body negative sample is added, and the Haar-like feature is used to detect the head on the basis of the movement foreground. The target tracking chain is established by detecting the head Walking tracker. The experimental results show that the algorithm proposed in this paper reduces the false detection rate and missed detection rate of the head, and improves the robustness to pedestrian tracking in many complex scenes.","PeriodicalId":424212,"journal":{"name":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2017.0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem that pedestrian tracking algorithm is prone to target tracking error in complex background, this paper proposes a pedestrian tracking algorithm based on human head detection to adapt to pedestrian tracking in many complex scenes. Firstly, the foreground segmentation technique is used to extract the motion foreground quickly. In the Adaboost classifier, the human body negative sample is added, and the Haar-like feature is used to detect the head on the basis of the movement foreground. The target tracking chain is established by detecting the head Walking tracker. The experimental results show that the algorithm proposed in this paper reduces the false detection rate and missed detection rate of the head, and improves the robustness to pedestrian tracking in many complex scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于背景无关头部检测的行人跟踪算法
针对行人跟踪算法在复杂背景下容易出现目标跟踪误差的问题,本文提出了一种基于人头检测的行人跟踪算法,以适应许多复杂场景下的行人跟踪。首先,利用前景分割技术快速提取运动前景;在Adaboost分类器中,加入了人体阴性样本,并在运动前景的基础上利用haar样特征对头部进行检测。通过检测头部行走跟踪器,建立目标跟踪链。实验结果表明,本文提出的算法降低了头部的误检率和漏检率,提高了在许多复杂场景下对行人跟踪的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS data cleaning and analysis based on YouSense mobile application A new approach for tracking human body movements by kinect sensor Crowd counting and density estimation via two-column convolutional neural network Human pose estimation via improved ResNet50 IOT based smart restaurant system using RFID
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1