R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, Amitava Ghosh
{"title":"NB-IoT system for M2M communication","authors":"R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, Amitava Ghosh","doi":"10.1109/WCNC.2016.7564708","DOIUrl":null,"url":null,"abstract":"In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.","PeriodicalId":436094,"journal":{"name":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2016.7564708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.