Higher Order Spectra Analysis of EEG Signals in Emotional Stress States

S. A. Hosseini, M. Khalilzadeh, M. Naghibi-Sistani, V. Niazmand
{"title":"Higher Order Spectra Analysis of EEG Signals in Emotional Stress States","authors":"S. A. Hosseini, M. Khalilzadeh, M. Naghibi-Sistani, V. Niazmand","doi":"10.1109/ITCS.2010.21","DOIUrl":null,"url":null,"abstract":"This paper proposes an emotional stress recognition system with EEG signals using higher order spectra (HOS). A visual induction based acquisition protocol is designed for recording the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) under two emotional stress states of participants, Calm neutral and Negatively exited. After pre-processing the signals, higher order spectra are employed to extract the features for classifying human emotions. We used Genetic Algorithm for optimum features selection for the classifier. Using the SVM classifier, our study achieved an average accuracy of 82% for the two-abovementioned emotional stress states. We concluded that HOS analysis could be an accurate tool in the assessment of human emotional stress states. We achieved to same results compared to our previous studies.","PeriodicalId":340471,"journal":{"name":"2010 Second International Conference on Information Technology and Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCS.2010.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

This paper proposes an emotional stress recognition system with EEG signals using higher order spectra (HOS). A visual induction based acquisition protocol is designed for recording the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) under two emotional stress states of participants, Calm neutral and Negatively exited. After pre-processing the signals, higher order spectra are employed to extract the features for classifying human emotions. We used Genetic Algorithm for optimum features selection for the classifier. Using the SVM classifier, our study achieved an average accuracy of 82% for the two-abovementioned emotional stress states. We concluded that HOS analysis could be an accurate tool in the assessment of human emotional stress states. We achieved to same results compared to our previous studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情绪应激状态下脑电图信号的高阶谱分析
提出了一种基于高阶谱(HOS)的脑电信号情绪应激识别系统。设计了一种基于视觉感应的采集方案,记录被试在平静中性和负向兴奋两种情绪应激状态下FP1、FP2、T3、T4和Pz 5个通道的脑电信号。在对信号进行预处理后,利用高阶谱提取特征进行情感分类。我们使用遗传算法对分类器进行最优特征选择。使用SVM分类器,我们的研究对上述两种情绪压力状态的平均准确率达到82%。我们认为,HOS分析可以作为评估人类情绪应激状态的准确工具。与以前的研究相比,我们取得了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chinese Sign Language Animation System on Mobile Devices Design of Analog Gaussian Filter Used in Roughness Measuring Instrument An Automatic Carving Method for RAR File Based on Content and Structure The Research on Intelligent Humidity Measurement System Promoting Effects of Network Class in Probability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1