Statistical Inference for a Simple Step Stress Model with Competing Risks Based on Generalized Type-I Hybrid Censoring

S. Mao, Bin Liu, Yimin Shi
{"title":"Statistical Inference for a Simple Step Stress Model with Competing Risks Based on Generalized Type-I Hybrid Censoring","authors":"S. Mao, Bin Liu, Yimin Shi","doi":"10.21078/JSSI-2021-533-16","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2021-533-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义i型混合滤波的具有竞争风险的简单阶跃应力模型的统计推断
摘要本文研究了一种简单阶跃应力加速寿命试验(SSALT)模型,用于指数竞争风险数据的推理分析。为了提高试验的效率和可控性,采用了一种广义的i型混合滤波方案。首先,基于累积暴露模型(CEM)建立了各参数的最大模量;然后利用条件期望和多重积分技术建立未知参数的条件矩生成函数。第三,采用基于精确mgf的方法、基于近似正态性的方法和基于偏差校正和加速(BCa)百分位bootstrap方法构建置信区间。最后,我们进行了仿真研究并举例比较了不同方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Annotation and Joint Extraction of Scientific Entities and Relationships in NSFC Project Texts Design and Selection of Pharmaceutical Innovation Incentive Policies: Subsidy or Inclusion in Health Insurance Plan Pricing Decision of E-Commerce Supply Chains with Return and Online Review of Product Quality Does Gender Affect Travelers' Intention to Use New Energy Autonomous Vehicles? Evidence from Beijing City, China Analysis of the Pull Effect of Local Government Special-Purpose Bond Investment on Economic Growth Under the Input-Output Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1