A Comparative Study on Deep Learning Techniques for Bird Species Recognition

Samparthi V S Kumar, Hari Kishan Kondaveerti
{"title":"A Comparative Study on Deep Learning Techniques for Bird Species Recognition","authors":"Samparthi V S Kumar, Hari Kishan Kondaveerti","doi":"10.1109/ICCT56969.2023.10075901","DOIUrl":null,"url":null,"abstract":"Naturally, birds appear around us at different locations in a variety of sizes, shapes, and colors. Bird species recognition provides crucial information on the state of the environment. Manual collection and processing of bird species data for the identification of birds is a huge task for ornithologists. Automatic bird recognition systems reduce their burden to some extent by collecting, processing bird related information and identifying the birds automatically. In this view, this paper presents a comparative study of the performances of MobileNet, AlexNet, InceptionResNet V2, Inception V3, and EfficientNet on bird species recognition. We gathered 11488 images of 200 bird species from the Kaggle dataset and increased the number of images to 40000 using data augmentation techniques. The experiment results shows that MobileNet and EfficientNet are the quickest training models. EfficientNet is outperforming the other models with test accuracy of 87.13%.","PeriodicalId":128100,"journal":{"name":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56969.2023.10075901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Naturally, birds appear around us at different locations in a variety of sizes, shapes, and colors. Bird species recognition provides crucial information on the state of the environment. Manual collection and processing of bird species data for the identification of birds is a huge task for ornithologists. Automatic bird recognition systems reduce their burden to some extent by collecting, processing bird related information and identifying the birds automatically. In this view, this paper presents a comparative study of the performances of MobileNet, AlexNet, InceptionResNet V2, Inception V3, and EfficientNet on bird species recognition. We gathered 11488 images of 200 bird species from the Kaggle dataset and increased the number of images to 40000 using data augmentation techniques. The experiment results shows that MobileNet and EfficientNet are the quickest training models. EfficientNet is outperforming the other models with test accuracy of 87.13%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鸟类物种识别的深度学习技术比较研究
自然地,鸟类以各种大小、形状和颜色出现在我们周围的不同位置。鸟类种类的识别提供了关于环境状况的重要信息。人工收集和处理鸟类物种数据以识别鸟类是鸟类学家的一项艰巨任务。鸟类自动识别系统通过对鸟类相关信息的采集、处理和自动识别,在一定程度上减轻了鸟类识别人员的负担。在此基础上,本文对MobileNet、AlexNet、Inception resnet V2、Inception V3和EfficientNet在鸟类物种识别方面的性能进行了比较研究。我们从Kaggle数据集中收集了200种鸟类的11488张图像,并使用数据增强技术将图像数量增加到40000张。实验结果表明,MobileNet和EfficientNet是最快的训练模型。效率网的测试准确率为87.13%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About ICCT '23 A Novel Technique to Detect URL Phishing based on Feature Count Effectiveness of Anti-Spoofing Protocols for Email Authentication Optimal Predictive Maintenance Technique for Manufacturing Semiconductors using Machine Learning Development of Secure IoT Ecosystems for Healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1