Multiparameter Stability Analysis of Systems with Induction Motor Loads, Weak Interconnections and Series Compensation

Joathan Devadason, P. Moses, M. Masoum
{"title":"Multiparameter Stability Analysis of Systems with Induction Motor Loads, Weak Interconnections and Series Compensation","authors":"Joathan Devadason, P. Moses, M. Masoum","doi":"10.37394/23201.2021.20.16","DOIUrl":null,"url":null,"abstract":"Dynamic modeling and stability domain analysis of a system consisting of a synchronous generator sup-plying an induction motor load through a series compensated weak network has been carried out in this paper. The impact of X/Rratio of the feeder and generation control system parameters on the stability domain with respect to series compensation has been examined through eigenvalue calculations and time domain simulations. From the studies conducted, it was observed that the stability domain of the system with respect to series compensation depends on the grid strength in addition to the excitation system parameters. Eigenvalue analysis shows that there is a strong correlation between the exciter gain, time constants of the measurement transducer and exciter, and the series compensation level. The main contribution of this work is to reveal new bifurcations which arise in these systems which has been studied through eigenvalue analysis and time domain simulations for various combinations of system parameters.","PeriodicalId":376260,"journal":{"name":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23201.2021.20.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic modeling and stability domain analysis of a system consisting of a synchronous generator sup-plying an induction motor load through a series compensated weak network has been carried out in this paper. The impact of X/Rratio of the feeder and generation control system parameters on the stability domain with respect to series compensation has been examined through eigenvalue calculations and time domain simulations. From the studies conducted, it was observed that the stability domain of the system with respect to series compensation depends on the grid strength in addition to the excitation system parameters. Eigenvalue analysis shows that there is a strong correlation between the exciter gain, time constants of the measurement transducer and exciter, and the series compensation level. The main contribution of this work is to reveal new bifurcations which arise in these systems which has been studied through eigenvalue analysis and time domain simulations for various combinations of system parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感应电机负载、弱互连和串联补偿系统的多参数稳定性分析
本文对由同步发电机通过串联补偿弱网络向异步电动机供电的系统进行了动态建模和稳定域分析。通过特征值计算和时域仿真研究了馈线和发电控制系统参数的X/ r比对串联补偿稳定域的影响。从所进行的研究中可以观察到,除了励磁系统参数外,系统关于串联补偿的稳定域还取决于电网强度。特征值分析表明,激振器增益、测量换能器和激振器的时间常数与串联补偿电平之间存在较强的相关性。这项工作的主要贡献是揭示了在这些系统中出现的新的分岔,这些分岔已经通过特征值分析和各种系统参数组合的时域模拟进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
PCB Image Defects Detection by Artificial Neural Networks and Resistance Analysis Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Design of Low Power SAR ADC with Novel Regenerative Comparator Design and Construction of a Density-Controlled Traffic Light System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1