{"title":"S2D2Net: An Improved Approach For Robust Steel Surface Defects Diagnosis With Small Sample Learning","authors":"Vikanksh Nath, C. Chattopadhyay","doi":"10.1109/ICIP42928.2021.9506405","DOIUrl":null,"url":null,"abstract":"Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.