An Extended Objective Function for Prototype-less Fuzzy Clustering

C. Borgelt, R. Kruse
{"title":"An Extended Objective Function for Prototype-less Fuzzy Clustering","authors":"C. Borgelt, R. Kruse","doi":"10.1109/NAFIPS.2007.383827","DOIUrl":null,"url":null,"abstract":"While in standard fuzzy clustering one optimizes a set of prototypes, one for each cluster, we study fuzzy clustering without prototypes. We define an objective function, which only depends on the distances between data points and the membership degrees of the data points to the clusters, and derive an iterative membership update rule. The properties of the resulting algorithm are then examined, especially w.r.t. to an additional parameter of the objective function (compared to the one proposed in [7]) that can be seen as a more flexible alternative to the fuzzifier. Corresponding experimental results are reported that demonstrate the merits of our approach.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While in standard fuzzy clustering one optimizes a set of prototypes, one for each cluster, we study fuzzy clustering without prototypes. We define an objective function, which only depends on the distances between data points and the membership degrees of the data points to the clusters, and derive an iterative membership update rule. The properties of the resulting algorithm are then examined, especially w.r.t. to an additional parameter of the objective function (compared to the one proposed in [7]) that can be seen as a more flexible alternative to the fuzzifier. Corresponding experimental results are reported that demonstrate the merits of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无原型模糊聚类的扩展目标函数
在标准模糊聚类中,每个聚类都有一个原型,而我们研究的是没有原型的模糊聚类。我们定义了一个目标函数,该函数只依赖于数据点之间的距离和数据点与聚类的隶属度,并推导了迭代的隶属度更新规则。然后检查结果算法的属性,特别是对目标函数的附加参数的w.r.t.(与[7]中提出的参数相比),可以看作是模糊化的更灵活的替代方案。相应的实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1