Vegetation water content estimation using bi-inverted Gaussian model

L. Xuan, Z. Ye, Junping Zhang
{"title":"Vegetation water content estimation using bi-inverted Gaussian model","authors":"L. Xuan, Z. Ye, Junping Zhang","doi":"10.1109/WHISPERS.2016.8071741","DOIUrl":null,"url":null,"abstract":"This paper presented a new approach called bi-inverted Gaussian model to calculated the diagnostic characteristic parameters of vegetation spectral. And used the parameters calculated from Hyperion image to make water content mapping. Using laboratory experiment measuring data, the relationships between absorption depth and the vegetation water content (VWC) were calculated. between absorption depth and VWC was 0.868 and the RMSE was 0.798. The correlations between them were higher than other vegetation indices.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presented a new approach called bi-inverted Gaussian model to calculated the diagnostic characteristic parameters of vegetation spectral. And used the parameters calculated from Hyperion image to make water content mapping. Using laboratory experiment measuring data, the relationships between absorption depth and the vegetation water content (VWC) were calculated. between absorption depth and VWC was 0.868 and the RMSE was 0.798. The correlations between them were higher than other vegetation indices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双倒高斯模型的植被含水量估算
提出了一种计算植被光谱诊断特征参数的新方法——双倒高斯模型。并利用海波龙图像计算出的参数进行了含水量制图。利用室内试验测量数据,计算了吸收深度与植被含水量之间的关系。吸收深度与VWC之间的关系为0.868,RMSE为0.798。它们之间的相关性高于其他植被指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1