MIXTURES OF REGRESSION CURVE MODELS FOR ARABIC CHARACTER RECOGNITION

Abdullah A. Al-Shaher
{"title":"MIXTURES OF REGRESSION CURVE MODELS FOR ARABIC CHARACTER RECOGNITION","authors":"Abdullah A. Al-Shaher","doi":"10.5121/CSIT.2019.90207","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We proceed then, by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.","PeriodicalId":251548,"journal":{"name":"Computer Science & Information Technology(CS & IT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Information Technology(CS & IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We proceed then, by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯文字识别的混合回归曲线模型
在本文中,我们演示了如何使用回归曲线来识别二维非刚性手写形状。每个形状由一组不重叠的均匀分布的地标表示。底层模型利用二阶多项式来模拟训练集中的形状。为了估计回归模型,我们需要提取描述一组形状类变化的所需系数。因此,采用最小二乘法对这些模态进行估计。然后,我们继续使用期望最大化算法训练这些系数。通过寻找相对于模型曲线的最小误差地标位移来进行识别。使用手写的孤立阿拉伯字符来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PARALLEL VERIFICATION EXECUTION WITH VERIFY ALGEBRA IN A CLOUD ENVIRONMENT THE EFFECT OF VISUALIZING ROLE OF VARIABLE IN OBJECT ORIENTED PROGRAMMING UNDERSTANDING DETECTION OF HATE SPEECH IN SOCIAL NETWORKS: A SURVEY ON MULTILINGUAL CORPUS EFFECTIVENESS OF U-NET IN DENOISING RGB IMAGES IN-VEHICLE CAMERA IMAGES PREDICTION BY GENERATIVE ADVERSARIAL NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1