Fault Diagnosis System for Turbo-Generator Set Based on Self-Organized Fuzzy Neural Network

Ping Yang, Zhen Zhang
{"title":"Fault Diagnosis System for Turbo-Generator Set Based on Self-Organized Fuzzy Neural Network","authors":"Ping Yang, Zhen Zhang","doi":"10.1109/FGCNS.2008.124","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of lower accuracy of vibration fault diagnosis system for turbo-generator set, a new diagnosis method based on self-organized fuzzy neural network is proposed and a self-organized fuzzy neural network system is structured for diagnosing faults of large-scale turbo-generator set in this paper by associating the fuzzy set theory with neural network technology. Especially, an effective fuzzy self-organized method for training samples of neural network is presented and the standard sample database for diagnosis neural network is established. Finally, supported by the 108DAI detecting system, a vibration fault diagnosis system of 600MW turbo-generator set is designed and realized by the proposed system structure, its running results in a thermal power plant of Guangdong Province show that this new diagnosis system can satisfy fault diagnosis requirement of large turbo-generator set. Its accuracy varies from 92 percent to 98 percent.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aiming at the problem of lower accuracy of vibration fault diagnosis system for turbo-generator set, a new diagnosis method based on self-organized fuzzy neural network is proposed and a self-organized fuzzy neural network system is structured for diagnosing faults of large-scale turbo-generator set in this paper by associating the fuzzy set theory with neural network technology. Especially, an effective fuzzy self-organized method for training samples of neural network is presented and the standard sample database for diagnosis neural network is established. Finally, supported by the 108DAI detecting system, a vibration fault diagnosis system of 600MW turbo-generator set is designed and realized by the proposed system structure, its running results in a thermal power plant of Guangdong Province show that this new diagnosis system can satisfy fault diagnosis requirement of large turbo-generator set. Its accuracy varies from 92 percent to 98 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自组织模糊神经网络的汽轮发电机组故障诊断系统
针对汽轮发电机组振动故障诊断系统精度较低的问题,提出了一种基于自组织模糊神经网络的故障诊断方法,将模糊集理论与神经网络技术相结合,构建了大型汽轮发电机组振动故障诊断的自组织模糊神经网络系统。特别提出了一种有效的神经网络训练样本的模糊自组织方法,并建立了诊断神经网络的标准样本库。最后,在108DAI检测系统的支持下,利用所提出的系统结构设计并实现了600MW汽轮发电机组振动故障诊断系统,在广东省某火电厂的运行结果表明,该诊断系统能够满足大型汽轮发电机组的故障诊断要求。它的准确率从92%到98%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1