Population balance modelling for fertilizer granulation process

Ludmila Vesjolaja, B. Glemmestad, B. Lie
{"title":"Population balance modelling for fertilizer granulation process","authors":"Ludmila Vesjolaja, B. Glemmestad, B. Lie","doi":"10.3384/ECP1815395","DOIUrl":null,"url":null,"abstract":"Few granulation plants are operated optimally. It is common to operate granulation plants below their maximum design capacity, and in many cases, periodic instabilities may also occur. From a process control and optimization point of view, it is desirable to develop a dynamic model that can show the dominating dynamics of a granulation process and can be used for design of optimal operation of the granulation plant. In this paper, a dynamic model of a drum granulator is developed using population balance (PB). Different simulation scenarios are used to analyze various granulation mechanisms that are characteristic to drum granulators. Simulation results show that for the drum granulator, the particle agglomeration has a greater impact on the change in particle size distribution (PSD) compared to the particle growth due to layering. In addition, coarser particles are produced when a sizedependent agglomeration kernel is used in the granulator model. For combined processes, i.e., processes where the particle growth due to layering and agglomeration are considered simultaneously, coarser particles with a wider PSD are obtained with the size-dependent agglomeration kernel.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP1815395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Few granulation plants are operated optimally. It is common to operate granulation plants below their maximum design capacity, and in many cases, periodic instabilities may also occur. From a process control and optimization point of view, it is desirable to develop a dynamic model that can show the dominating dynamics of a granulation process and can be used for design of optimal operation of the granulation plant. In this paper, a dynamic model of a drum granulator is developed using population balance (PB). Different simulation scenarios are used to analyze various granulation mechanisms that are characteristic to drum granulators. Simulation results show that for the drum granulator, the particle agglomeration has a greater impact on the change in particle size distribution (PSD) compared to the particle growth due to layering. In addition, coarser particles are produced when a sizedependent agglomeration kernel is used in the granulator model. For combined processes, i.e., processes where the particle growth due to layering and agglomeration are considered simultaneously, coarser particles with a wider PSD are obtained with the size-dependent agglomeration kernel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肥料造粒过程的种群平衡模型
很少有造粒厂能达到最佳运行状态。造粒厂低于其最大设计能力运行是很常见的,在许多情况下,也可能发生周期性不稳定。从过程控制和优化的角度来看,需要建立一个动态模型,以显示造粒过程的主导动力学,并可用于造粒厂的优化操作设计。本文利用种群平衡理论建立了滚筒造粒机的动态模型。采用不同的模拟场景来分析鼓式造粒机的各种造粒机制。模拟结果表明,对于滚筒造粒机来说,颗粒团聚对颗粒粒度分布(PSD)变化的影响要大于分层对颗粒生长的影响。此外,当在造粒机模型中使用粒径相关的团聚核时,会产生较粗的颗粒。对于组合过程,即同时考虑颗粒因分层和团聚而生长的过程,则获得具有更宽PSD的更粗的颗粒,并具有与尺寸相关的团聚核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Computational study of Chemical Looping Combustion Using the concept of data enclosing tunnel as an online feedback tool for simulator training FMI4j: A Software Package for working with Functional Mock-up Units on the Java Virtual Machine Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor A Data-Driven Sensitivity Analysis Approach for Dynamically Positioned Vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1