Using the Ornstein-Uhlenbeck Process for Random Exploration

J. Nauta, Yara Khaluf, P. Simoens
{"title":"Using the Ornstein-Uhlenbeck Process for Random Exploration","authors":"J. Nauta, Yara Khaluf, P. Simoens","doi":"10.5220/0007724500590066","DOIUrl":null,"url":null,"abstract":"In model-based Reinforcement Learning, an agent aims to learn a transition model between attainable states. Since the agent initially has zero knowledge of the transition model, it needs to resort to random exploration in order to learn the model. In this work, we demonstrate how the Ornstein-Uhlenbeck process can be used as a sampling scheme to generate exploratory Brownian motion in the absence of a transition model. Whereas current approaches rely on knowledge of the transition model to generate the steps of Brownian motion, the Ornstein-Uhlenbeck process does not. Additionally, the Ornstein-Uhlenbeck process naturally includes a drift term originating from a potential function. We show that this potential can be controlled by the agent itself, and allows executing non-equilibrium behavior such as ballistic motion or local trapping.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007724500590066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In model-based Reinforcement Learning, an agent aims to learn a transition model between attainable states. Since the agent initially has zero knowledge of the transition model, it needs to resort to random exploration in order to learn the model. In this work, we demonstrate how the Ornstein-Uhlenbeck process can be used as a sampling scheme to generate exploratory Brownian motion in the absence of a transition model. Whereas current approaches rely on knowledge of the transition model to generate the steps of Brownian motion, the Ornstein-Uhlenbeck process does not. Additionally, the Ornstein-Uhlenbeck process naturally includes a drift term originating from a potential function. We show that this potential can be controlled by the agent itself, and allows executing non-equilibrium behavior such as ballistic motion or local trapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Ornstein-Uhlenbeck过程进行随机探索
在基于模型的强化学习中,智能体的目标是学习可达到状态之间的过渡模型。由于智能体最初对过渡模型的知识为零,因此需要通过随机探索来学习模型。在这项工作中,我们展示了如何将Ornstein-Uhlenbeck过程用作采样方案,以在没有过渡模型的情况下产生探索性布朗运动。当前的方法依赖于过渡模型的知识来产生布朗运动的步骤,而Ornstein-Uhlenbeck过程则不是这样。此外,Ornstein-Uhlenbeck过程自然包含一个源自势函数的漂移项。我们表明,这种潜力可以由代理本身控制,并允许执行非平衡行为,如弹道运动或局部捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moving Other Way: Exploring Word Mover Distance Extensions Artificial Neural Networks Jamming on the Beat FLOPTICS: A Novel Automated Gating Technique for Flow Cytometry Data It Means More if It Sounds Good: Yet Another Hypotheses Concerning the Evolution of Polysemous Words An Empirical Research on the Investment Strategy of Stock Market based on Deep Reinforcement Learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1