Extracting Blink Rate Variability from EEG Signals

R. Paprocki, Temesgen Gebrehiwot, Marija Gradinscak, Artem Lenskiy
{"title":"Extracting Blink Rate Variability from EEG Signals","authors":"R. Paprocki, Temesgen Gebrehiwot, Marija Gradinscak, Artem Lenskiy","doi":"10.18178/IJMLC.2016.6.3.597","DOIUrl":null,"url":null,"abstract":"Generally, blinks are treated on equal with artifacts and noise while analyzing EEG signals. However, blinks carry important information about mental processes and thus it is important to detect blinks accurately. The aim of the presented study is to propose a blink detection method and discuss its application for extracting blink rate variability, a novel concept that might shed some light on the mental processes. In this study, 14 EEG recordings were selected for assessing the quality of the proposed blink detection algorithm.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/IJMLC.2016.6.3.597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Generally, blinks are treated on equal with artifacts and noise while analyzing EEG signals. However, blinks carry important information about mental processes and thus it is important to detect blinks accurately. The aim of the presented study is to propose a blink detection method and discuss its application for extracting blink rate variability, a novel concept that might shed some light on the mental processes. In this study, 14 EEG recordings were selected for assessing the quality of the proposed blink detection algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从脑电信号中提取眨眼频率变异性
在分析脑电信号时,通常将眨眼与伪影和噪声同等对待。然而,眨眼携带着心理过程的重要信息,因此准确地检测眨眼是很重要的。本研究的目的是提出一种眨眼检测方法,并讨论其在提取眨眼频率变异性方面的应用,这是一个可能对心理过程有所启发的新概念。在这项研究中,选择了14个EEG记录来评估所提出的眨眼检测算法的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1