An Improved LSTM Network Intrusion Detection Method

Liang Zhang, Hao Yan, Qingyi Zhu
{"title":"An Improved LSTM Network Intrusion Detection Method","authors":"Liang Zhang, Hao Yan, Qingyi Zhu","doi":"10.1109/ICCC51575.2020.9344911","DOIUrl":null,"url":null,"abstract":"The characteristics of high network traffic dimension and large data volume make the traditional network intrusion detection model have a longer response time, lower detection accuracy, and seriously endanger the data security of network entities. In order to solve this problem, this paper studies the improved LSTM intrusion detection algorithm model, and uses Quantum Particle Swarm Optimization (QPSO) to select the network traffic data to reduce the feature dimension. The dimensionality-reduced network traffic is classified to detect network intrusion behavior. After testing on the KDDCup99 data set, the experimental results show that the QPSO feature selection algorithm can select the optimal feature subset, and the improved LSTM network can effectively improve the accuracy and F1-Score of intrusion detection.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9344911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The characteristics of high network traffic dimension and large data volume make the traditional network intrusion detection model have a longer response time, lower detection accuracy, and seriously endanger the data security of network entities. In order to solve this problem, this paper studies the improved LSTM intrusion detection algorithm model, and uses Quantum Particle Swarm Optimization (QPSO) to select the network traffic data to reduce the feature dimension. The dimensionality-reduced network traffic is classified to detect network intrusion behavior. After testing on the KDDCup99 data set, the experimental results show that the QPSO feature selection algorithm can select the optimal feature subset, and the improved LSTM network can effectively improve the accuracy and F1-Score of intrusion detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的LSTM网络入侵检测方法
网络流量维数高、数据量大的特点使得传统的网络入侵检测模型响应时间较长,检测精度较低,严重危及网络实体的数据安全。为了解决这一问题,本文研究了改进的LSTM入侵检测算法模型,并利用量子粒子群算法(QPSO)选择网络流量数据进行特征降维。对降维后的网络流量进行分类,检测网络入侵行为。经过在KDDCup99数据集上的测试,实验结果表明,QPSO特征选择算法能够选择最优的特征子集,改进的LSTM网络能够有效提高入侵检测的准确率和F1-Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1