Bristle Motion, Forces, and Related Vertical Translation for a Novel Electric Toothbrush Design

F. Goldschmidtboeing, U. Pelz, Karen Lynn Claire-Zimmet, Michael Wolf, R. Goerlach, P. Woias
{"title":"Bristle Motion, Forces, and Related Vertical Translation for a Novel Electric Toothbrush Design","authors":"F. Goldschmidtboeing, U. Pelz, Karen Lynn Claire-Zimmet, Michael Wolf, R. Goerlach, P. Woias","doi":"10.5545/sv-jme.2020.6665","DOIUrl":null,"url":null,"abstract":"This paper presents a combination of theoretical and experimental techniques applied to characterize the bristle motion, forces, and related vertical translation for a novel electric toothbrush design with a linear drive system. Results of the theoretical description, based on a single filament, were successfully compared with laboratory-based investigations: force measurements and high-speed video analysis, and tracking the toothbrush motion. This work describes the vertical translation induced in the toothbrush head, of up to 250 μm, when the toothbrush bristles are applied against a contact surface at brushing loads of approximately 1 N to 2.5 N. Using these techniques, including Fast-Fourier transform analysis, it is shown that the vertical motion of the head is composed of the driving frequency and its harmonics.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2020.6665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a combination of theoretical and experimental techniques applied to characterize the bristle motion, forces, and related vertical translation for a novel electric toothbrush design with a linear drive system. Results of the theoretical description, based on a single filament, were successfully compared with laboratory-based investigations: force measurements and high-speed video analysis, and tracking the toothbrush motion. This work describes the vertical translation induced in the toothbrush head, of up to 250 μm, when the toothbrush bristles are applied against a contact surface at brushing loads of approximately 1 N to 2.5 N. Using these techniques, including Fast-Fourier transform analysis, it is shown that the vertical motion of the head is composed of the driving frequency and its harmonics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型电动牙刷设计的刷毛运动、力和相关垂直平移
本文介绍了一种新型的线性驱动系统电动牙刷,结合理论和实验技术来表征刷毛运动、力和相关的垂直平移。理论描述的结果,基于单个灯丝,成功地与基于实验室的研究进行了比较:力测量和高速视频分析,并跟踪牙刷的运动。这项工作描述了牙刷刷毛在大约1牛至2.5牛的刷牙负荷下对接触面产生高达250 μm的垂直平移,使用这些技术,包括快速傅立叶变换分析,表明牙刷刷头的垂直运动由驱动频率及其谐波组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and Multi-objective Optimization of Elastic Abrasive Cutting of C45 and 42Cr4 Steels Review of Peridynamics: Theory, Applications, and Future Perspectives Investigation of Cutting Performance of a Circular Saw Blade Based on ANSYS/LS-DYNA Study of Bondura® Expanding PIN System – Combined Axial and Radial Locking System Extremal-Micro Genetic Algorithm Model for Time-Cost Optimization with Optimal Labour Productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1