Analysis of single-hop traffic grooming in mesh WDM optical networks

C. Xin, C. Qiao, S. Dixit
{"title":"Analysis of single-hop traffic grooming in mesh WDM optical networks","authors":"C. Xin, C. Qiao, S. Dixit","doi":"10.1117/12.533301","DOIUrl":null,"url":null,"abstract":"Traffic grooming is a significant task in internetworking between an optical wavelength-routed core network that supplies \"pipes\" at the wavelength-granularity, and the attached client (e.g., IP) networks that usually require connections of sub-wavelength granularity. The focus of this study is to develop a theoretical performance analysis model for online traffic grooming in mesh optical networks. This paper first briefly discusses the difficulty in applying the analytic models developed for circuit-switched networks (including wavelength-routed optical networks) to the traffic grooming problem. It then develops a link blocking model based on the continuous time Markov chain and queueing theory, and finally conducts end-to-end performance analysis based on the Erlang fixed-point approximation. The results obtained from the analytic model are shown to match well with numerical results obtained from simulations.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Traffic grooming is a significant task in internetworking between an optical wavelength-routed core network that supplies "pipes" at the wavelength-granularity, and the attached client (e.g., IP) networks that usually require connections of sub-wavelength granularity. The focus of this study is to develop a theoretical performance analysis model for online traffic grooming in mesh optical networks. This paper first briefly discusses the difficulty in applying the analytic models developed for circuit-switched networks (including wavelength-routed optical networks) to the traffic grooming problem. It then develops a link blocking model based on the continuous time Markov chain and queueing theory, and finally conducts end-to-end performance analysis based on the Erlang fixed-point approximation. The results obtained from the analytic model are shown to match well with numerical results obtained from simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网状WDM光网络中单跳流量疏导分析
在波长路由的核心网(提供波长粒度的“管道”)和通常需要亚波长粒度连接的附加客户端(例如IP)网络之间的互连网络中,流量疏导是一项重要任务。本研究的重点是建立网状光网络中在线流量疏导的理论性能分析模型。本文首先简要讨论了将为电路交换网络(包括波长路由光网络)开发的分析模型应用于流量疏导问题的困难。然后基于连续时间马尔可夫链和排队理论建立链路阻塞模型,最后基于Erlang不动点近似进行端到端性能分析。分析模型的计算结果与数值模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid protection-restoration mechanism for enhancing dual-failure restorability in optical mesh-restorable networks Overspill routing in optical networks: a new architecture for future-proof IP-over-WDM networks Grooming of multicast sessions in WDM ring networks Dynamic bandwidth allocation algorithms in EPON: a simulation study CHEETAH: circuit-switched high-speed end-to-end transport architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1