Piezoelectric energy harvesting from an oscillating wing

A. Abdelkefi, M. Hajj, M. Ghommem, A. Nuhait
{"title":"Piezoelectric energy harvesting from an oscillating wing","authors":"A. Abdelkefi, M. Hajj, M. Ghommem, A. Nuhait","doi":"10.1109/ISMA.2012.6215195","DOIUrl":null,"url":null,"abstract":"We investigate power levels that can be harvested from aeroelastic vibrations of an elastically-mounted wing that is supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. A model that tightly couples the electromechanical model with the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power are determined for a range of operating wind speeds. The results show that there is an optimum value of load resistance that maximizes the level of harvested power. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by properly choosing the eccentricity. This analysis helps in the design of piezoaeroelastic energy harvesters that can operate optimally at prevailing air speeds.","PeriodicalId":315018,"journal":{"name":"2012 8th International Symposium on Mechatronics and its Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Mechatronics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2012.6215195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate power levels that can be harvested from aeroelastic vibrations of an elastically-mounted wing that is supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. A model that tightly couples the electromechanical model with the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power are determined for a range of operating wind speeds. The results show that there is an optimum value of load resistance that maximizes the level of harvested power. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by properly choosing the eccentricity. This analysis helps in the design of piezoaeroelastic energy harvesters that can operate optimally at prevailing air speeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
振动机翼的压电能量收集
我们研究了可以从非线性弹簧支撑的弹性安装机翼的气动弹性振动中获得的功率水平。通过将压电换能器连接到跳水自由度上来收集能量。建立了一种将机电模型与三维非定常涡点阵法紧密耦合的非定常气动载荷预测模型。在一定的运行风速范围内,确定了电负载阻力、非线性扭转弹簧和弹性轴与重力轴之间的偏心对收获功率水平的影响。结果表明,存在一个负载电阻的最佳值,使收获功率的水平最大化。结果还表明,非线性扭转弹簧对提高收获功率水平起着重要作用。此外,通过合理选择偏心距,可以提高收获功率。这种分析有助于设计能够在当前空气速度下最佳运行的压电弹性能量收集器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective potential field model to solve hospital resource management crisis Biofeedback for epilepsy treatment Fuzzy control of a CSTR process Autonomous navigation robot for landmine detection applications Invariant-manifold approach to the stabilization of feedforward nonlinear systems having uncertain dead-zone inputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1