Enhancing the in Situ Visualization of Performance Data in Parallel CFD Applications

Rigel F. C. Alves, A. Knüpfer
{"title":"Enhancing the in Situ Visualization of Performance Data in Parallel CFD Applications","authors":"Rigel F. C. Alves, A. Knüpfer","doi":"10.14529/jsfi200402","DOIUrl":null,"url":null,"abstract":"This paper continues the work initiated by the authors on the feasibility of using ParaView as visualization software for the analysis of parallel Computational Fluid Dynamics (CFD) codes’ performance. Current performance tools have limited capacity of displaying their data on top of three-dimensional, framed (i.e., time-stepped) representations of the cluster’s topology. In our first paper, a plugin for the open-source performance tool Score-P was introduced, which intercepts an arbitrary number of manually selected code regions (mostly functions) and send their respective measurements–amount of executions and cumulative time spent–to ParaView (through its in situ library, Catalyst), as if they were any other flow-related variable. Our second paper added to such plugin the capacity to (also) map communication data (messages exchanged between MPI ranks) to the simulation’s geometry. So far the tool was limited to codes which already have the in situ adapter; but in this paper, we will take the performance data and display it–also in codes without in situ–on a three-dimensional representation of the hardware resources being used by the simulation. Testing is done with the Multi-Grid and Block Tri-diagonal NPBs, as well as Rolls-Royce’s CFD code, Hydra. The benefits and overhead of the plugin's new functionalities are discussed.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi200402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper continues the work initiated by the authors on the feasibility of using ParaView as visualization software for the analysis of parallel Computational Fluid Dynamics (CFD) codes’ performance. Current performance tools have limited capacity of displaying their data on top of three-dimensional, framed (i.e., time-stepped) representations of the cluster’s topology. In our first paper, a plugin for the open-source performance tool Score-P was introduced, which intercepts an arbitrary number of manually selected code regions (mostly functions) and send their respective measurements–amount of executions and cumulative time spent–to ParaView (through its in situ library, Catalyst), as if they were any other flow-related variable. Our second paper added to such plugin the capacity to (also) map communication data (messages exchanged between MPI ranks) to the simulation’s geometry. So far the tool was limited to codes which already have the in situ adapter; but in this paper, we will take the performance data and display it–also in codes without in situ–on a three-dimensional representation of the hardware resources being used by the simulation. Testing is done with the Multi-Grid and Block Tri-diagonal NPBs, as well as Rolls-Royce’s CFD code, Hydra. The benefits and overhead of the plugin's new functionalities are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强并行CFD应用中性能数据的现场可视化
本文继续了作者关于使用ParaView作为可视化软件分析并行计算流体力学(CFD)代码性能的可行性的工作。当前的性能工具在集群拓扑的三维、框架(即时间步进)表示上显示数据的能力有限。在我们的第一篇论文中,介绍了一个开源性能工具Score-P的插件,它拦截任意数量的手动选择的代码区域(主要是函数),并将它们各自的测量值——执行量和累计花费的时间——发送给ParaView(通过它的原位库Catalyst),就像它们是任何其他流相关的变量一样。我们的第二篇论文为这样的插件添加了映射通信数据(MPI等级之间交换的消息)到模拟几何的能力。到目前为止,该工具仅限于已经具有原位适配器的代码;但在本文中,我们将采用性能数据并将其显示为模拟所使用的硬件资源的三维表示。测试使用了Multi-Grid和Block三对角线npb,以及Rolls-Royce的CFD代码Hydra。讨论了插件新功能的好处和开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1