A. Zenani, T. Dzogbewu, W. D. Preez, I. Yadroitsev
{"title":"Optimum Process Parameters for Direct Metal Laser Sintering of Ti6Al Powder Blend","authors":"A. Zenani, T. Dzogbewu, W. D. Preez, I. Yadroitsev","doi":"10.13189/ujme.2020.080402","DOIUrl":null,"url":null,"abstract":"Titanium aluminides have become the preferred titanium-based alloys for high temperature applications due to their resistance to oxidation at elevated temperatures. However, the inherent limitations of the conventional methods of manufacturing have adverse effects on the mechanical properties of the alloy and limit its applications. The current study focused on determining the optimum process parameters that could be used to produce a Ti6Al alloy with required microstructural properties and complex geometrical configurations using the direct metal laser sintering method. Single tracks were produced at laser powers of 150 W and 350 W over a wide range of scanning speeds. Continuous tracks were achieved only at a laser power of 150 W at corresponding scanning speeds of 1.0 m/s to 1.4 m/s. A cross sectional analysis was conducted on the single tracks and 1.2 m/s emerged as the optimum scanning speed. 3D objects were manufactured at optimum process parameters of 150 W, 1.2 m/s and a hatch distance of 80 µm. The microstructure of the 3D objects was homogenous which attests that the direct metal laser sintering method could be used to produce Ti6Al parts with the desired mechanical properties and geometrical complexity.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"62 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2020.080402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Titanium aluminides have become the preferred titanium-based alloys for high temperature applications due to their resistance to oxidation at elevated temperatures. However, the inherent limitations of the conventional methods of manufacturing have adverse effects on the mechanical properties of the alloy and limit its applications. The current study focused on determining the optimum process parameters that could be used to produce a Ti6Al alloy with required microstructural properties and complex geometrical configurations using the direct metal laser sintering method. Single tracks were produced at laser powers of 150 W and 350 W over a wide range of scanning speeds. Continuous tracks were achieved only at a laser power of 150 W at corresponding scanning speeds of 1.0 m/s to 1.4 m/s. A cross sectional analysis was conducted on the single tracks and 1.2 m/s emerged as the optimum scanning speed. 3D objects were manufactured at optimum process parameters of 150 W, 1.2 m/s and a hatch distance of 80 µm. The microstructure of the 3D objects was homogenous which attests that the direct metal laser sintering method could be used to produce Ti6Al parts with the desired mechanical properties and geometrical complexity.