MARS: the First Romanian Pollen Dataset using a Rapid-E Particle Analyzer

M. Boldeanu, C. Marin, D. Ene, L. Mărmureanu, H. Cucu, C. Burileanu
{"title":"MARS: the First Romanian Pollen Dataset using a Rapid-E Particle Analyzer","authors":"M. Boldeanu, C. Marin, D. Ene, L. Mărmureanu, H. Cucu, C. Burileanu","doi":"10.1109/sped53181.2021.9587447","DOIUrl":null,"url":null,"abstract":"Pollen allergies are a growing concern for human health. This is why automated pollen monitoring is becoming an important area of research. Machine learning approaches show great promise for tackling this issue but these algorithms need large training data sets to perform well. This study introduces a new pollen data set, obtained using a Rapid-E particle analyzer, that is representative for the flora of Romania. Pollen, from thirteen species present in Romania, was used in developing this database with over 100 thousand samples measured. Our study shows performance similar to or above that of humans in the task of pollen classification on the newly introduced data set using a convolutional neural network.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pollen allergies are a growing concern for human health. This is why automated pollen monitoring is becoming an important area of research. Machine learning approaches show great promise for tackling this issue but these algorithms need large training data sets to perform well. This study introduces a new pollen data set, obtained using a Rapid-E particle analyzer, that is representative for the flora of Romania. Pollen, from thirteen species present in Romania, was used in developing this database with over 100 thousand samples measured. Our study shows performance similar to or above that of humans in the task of pollen classification on the newly introduced data set using a convolutional neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火星:第一个使用快速e粒子分析仪的罗马尼亚花粉数据集
花粉过敏是人类健康日益关注的问题。这就是为什么自动花粉监测正在成为一个重要的研究领域。机器学习方法在解决这个问题上显示出很大的希望,但这些算法需要大量的训练数据集才能表现良好。本文介绍了一种新的花粉数据集,该数据集是用Rapid-E颗粒分析仪获得的,它代表了罗马尼亚的植物区系。来自罗马尼亚的13个物种的花粉被用于建立这个数据库,测量了超过10万个样本。我们的研究表明,在使用卷积神经网络对新引入的数据集进行花粉分类的任务中,它们的表现与人类相似或更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Segmentation of Texts based on Stylistic Features Romanian printed language, statistical independence and the type II statistical error Comparison in Suprasegmental Characteristics between Typical and Dysarthric Talkers at Varying Severity Levels Neural Networks for Automatic Environmental Sound Recognition Speaker Verification Experiments using Identity Vectors, on a Romanian Speakers Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1