Conditional quantile regression with ℓ1-regularization and e-insensitive pinball loss

Meng Li, Meijian Zhang, Hongwei Sun
{"title":"Conditional quantile regression with ℓ1-regularization and e-insensitive pinball loss","authors":"Meng Li, Meijian Zhang, Hongwei Sun","doi":"10.1109/BMEI.2015.7401620","DOIUrl":null,"url":null,"abstract":"This paper considers the regularized learning schemes based on ℓ1-regularizer and the ε-insensitive pinball loss in a data dependent hypothesis space. The target is the error analysis for the conditional quantile regression learning. Except for continuity and boundedness, the kernel function is not necessary to satisfy any further regularity conditions. The data dependent nature of the algorithm leads to an extra error term called hypothesis error. By concentration inequality with ℓ2-empirical covering numbers and operator decomposition techniques, satisfied error bounds and convergence rates are explicitly derived.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the regularized learning schemes based on ℓ1-regularizer and the ε-insensitive pinball loss in a data dependent hypothesis space. The target is the error analysis for the conditional quantile regression learning. Except for continuity and boundedness, the kernel function is not necessary to satisfy any further regularity conditions. The data dependent nature of the algorithm leads to an extra error term called hypothesis error. By concentration inequality with ℓ2-empirical covering numbers and operator decomposition techniques, satisfied error bounds and convergence rates are explicitly derived.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有1-正则化和e-不敏感弹球损失的条件分位数回归
本文研究了数据依赖假设空间中基于1-正则化器和ε-不敏感弹球损失的正则化学习方案。目标是条件分位数回归学习的误差分析。除了具有连续性和有界性外,核函数不需要满足任何进一步的正则性条件。该算法的数据依赖性质导致了一个额外的误差项,称为假设误差。利用具有2-经验覆盖数的浓度不等式和算子分解技术,明确地推导出满足的误差界和收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECG signal compressed sensing using the wavelet tree model Development of a quantifiable optical reader for lateral flow immunoassay A tightly secure multi-party-signature protocol in the plain model Breast mass detection with kernelized supervised hashing 3D reconstruction of human enamel Ex vivo using high frequency ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1