Adaptive neural network PID controller for nonlinear systems

Ramzi Bouzaiene, S. Hafsi, F. Bouani
{"title":"Adaptive neural network PID controller for nonlinear systems","authors":"Ramzi Bouzaiene, S. Hafsi, F. Bouani","doi":"10.1109/scc53769.2021.9768352","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in adaptive neural PID control with a reference model for nonlinear systems. A recurrent neural network architecture is studied, and its parameters are computed to mimic a conventional PID controller. Two neural networks architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) are used for modeling nonlinear systems. To avoid the errors of the Jacobian system approximation, it is best to model the system with a neural network called an emulator. By adding an emulator in parallel with the dynamic system model, the emulator will be trained to learn the dynamics of the system.The back-propagation method is used as the basis for developing algorithms capable of modeling and controlling our nonlinear systems.","PeriodicalId":365845,"journal":{"name":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scc53769.2021.9768352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are interested in adaptive neural PID control with a reference model for nonlinear systems. A recurrent neural network architecture is studied, and its parameters are computed to mimic a conventional PID controller. Two neural networks architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) are used for modeling nonlinear systems. To avoid the errors of the Jacobian system approximation, it is best to model the system with a neural network called an emulator. By adding an emulator in parallel with the dynamic system model, the emulator will be trained to learn the dynamics of the system.The back-propagation method is used as the basis for developing algorithms capable of modeling and controlling our nonlinear systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统的自适应神经网络PID控制器
在本文中,我们感兴趣的是具有参考模型的非线性系统自适应神经PID控制。研究了一种递归神经网络结构,并计算了其参数以模拟传统的PID控制器。采用前馈神经网络(FFNN)和递归神经网络(RNN)两种神经网络结构对非线性系统进行建模。为了避免雅可比系统近似的误差,最好使用称为仿真器的神经网络对系统进行建模。通过与动态系统模型并行添加仿真器,可以训练仿真器学习系统的动态特性。反向传播方法被用作开发能够建模和控制非线性系统的算法的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Evaluation of the ACE DTLS Framework over Internet of Things Devices Rule-Based power sharing strategy for a fuel cell-supercapacitor vehicle Investigation the Performance Effect of QOS in MPLS-TE Network Advanced nonlinear method of a Photovoltaic system connected to the single-phase network Overview and comparatif of maximum power point tracking methods of PV power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1