C2BID: Cluster Change-Based Intrusion Detection

Tiago Fernandes, Luís Dias, M. Correia
{"title":"C2BID: Cluster Change-Based Intrusion Detection","authors":"Tiago Fernandes, Luís Dias, M. Correia","doi":"10.1109/TrustCom50675.2020.00051","DOIUrl":null,"url":null,"abstract":"The paper presents a network intrusion detection approach that flags malicious activity without previous knowledge about attacks or training data. The Cluster Change-Based Intrusion Detection approach (C2BID) detects intrusions by monitoring host behavior changes. For that purpose, C2BID defines and extracts features from network data, aggregates hosts with similar behavior using clustering, then analyses how hosts move between clusters along a period of time. This contrasts with previous work in the area that stops at the clustering step. We evaluated C2BID experimentally with two datasets, obtaining better F-Score than previous solutions.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a network intrusion detection approach that flags malicious activity without previous knowledge about attacks or training data. The Cluster Change-Based Intrusion Detection approach (C2BID) detects intrusions by monitoring host behavior changes. For that purpose, C2BID defines and extracts features from network data, aggregates hosts with similar behavior using clustering, then analyses how hosts move between clusters along a period of time. This contrasts with previous work in the area that stops at the clustering step. We evaluated C2BID experimentally with two datasets, obtaining better F-Score than previous solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C2BID:基于集群变化的入侵检测
本文提出了一种无需事先了解攻击或训练数据即可标记恶意活动的网络入侵检测方法。基于集群变化的入侵检测方法(C2BID)通过监控主机行为变化来检测入侵。为此,C2BID从网络数据中定义和提取特征,使用集群聚合具有相似行为的主机,然后分析主机在一段时间内如何在集群之间移动。这与之前在聚类步骤停止的领域的工作形成了对比。我们用两个数据集对C2BID进行了实验评估,获得了比以前更好的F-Score解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Stitching and Alignment of Mouse Carcass EM Images One Covert Channel to Rule Them All: A Practical Approach to Data Exfiltration in the Cloud MAUSPAD: Mouse-based Authentication Using Segmentation-based, Progress-Adjusted DTW Finding Geometric Medians with Location Privacy Multi-Input Functional Encryption: Efficient Applications from Symmetric Primitives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1