Sentiment Analysis applying the Big 5 and Polarity on the ICC’s Top ODI All-Rounders based on Twitter

Mimun Barid, S. Hossain, Md. Mahmudur Rahman, M. Hasan
{"title":"Sentiment Analysis applying the Big 5 and Polarity on the ICC’s Top ODI All-Rounders based on Twitter","authors":"Mimun Barid, S. Hossain, Md. Mahmudur Rahman, M. Hasan","doi":"10.1109/ICCIT54785.2021.9689797","DOIUrl":null,"url":null,"abstract":"The study aims to employ sentiment analysis on Twitter data to determine the behavioral aspects of the ICC(International Cricket Council)’ s top-ranked ODI male all-rounders. The majority of the sportsmen share their thoughts and personal life events on social media platforms like Twitter. We identify some similarities and differences on several sentiment parameters. In addition, we present some insights into sentiments via some multidimensional analyses. Furthermore, the dispositions of those players are being studied and retained for future references, and a systematic way is being explored with a view to examining cricketers’ Twitter activities. This research includes a total of 56889 tweets from the verified Twitter account of 26 ODI all-rounders. We use the Big 5 personality attributes as one of the sentiment analysis methodologies that provide us with some pertinent findings of the pro-social sentiments of top-ranked all-rounders.","PeriodicalId":166450,"journal":{"name":"2021 24th International Conference on Computer and Information Technology (ICCIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT54785.2021.9689797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study aims to employ sentiment analysis on Twitter data to determine the behavioral aspects of the ICC(International Cricket Council)’ s top-ranked ODI male all-rounders. The majority of the sportsmen share their thoughts and personal life events on social media platforms like Twitter. We identify some similarities and differences on several sentiment parameters. In addition, we present some insights into sentiments via some multidimensional analyses. Furthermore, the dispositions of those players are being studied and retained for future references, and a systematic way is being explored with a view to examining cricketers’ Twitter activities. This research includes a total of 56889 tweets from the verified Twitter account of 26 ODI all-rounders. We use the Big 5 personality attributes as one of the sentiment analysis methodologies that provide us with some pertinent findings of the pro-social sentiments of top-ranked all-rounders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Twitter的ICC顶级ODI全能选手的大5和极性情感分析
该研究旨在对Twitter数据进行情绪分析,以确定ICC(国际板球理事会)排名靠前的ODI男性全能选手的行为方面。大多数运动员在推特等社交媒体平台上分享他们的想法和个人生活事件。我们在几个情绪参数上识别出一些相似点和不同点。此外,我们还通过一些多维分析提出了一些关于情绪的见解。此外,正在研究并保留这些球员的性格以备将来参考,并且正在探索一种系统的方法来检查板球运动员的Twitter活动。本研究共包含26名ODI全能选手的验证Twitter账号的56889条推文。我们使用五大人格属性作为情感分析方法之一,为我们提供了一些有关排名靠前的多面手的亲社会情绪的相关发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Eigenvalue Distribution of Hankel Matrix: A Tool for Spectral Estimation From Noisy Data Demystify the Black-box of Deep Learning Models for COVID-19 Detection from Chest CT Radiographs Machine Learning Techniques to Precaution of Emerging Disease in the Poultry Industry A Framework for Multi-party Skyline Query Maintaining Privacy and Data Integrity Application of Feature based Face Detection in Adaptive Skin Pixel Identification Using Signal Processing Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1