{"title":"Location in Search","authors":"Vanessa Murdock","doi":"10.1145/2766462.2776783","DOIUrl":null,"url":null,"abstract":"As users turn increasingly to handheld devices to find information, the research community has focused on real-time location signals (GPS signals) to improve search engine effectiveness. Location signals have been investigated for predicting businesses the user will frequent[3], assigning geographic coordinates to media files[1], and to improve mobile search ranking[2]. While the increased focus on real-time user location has produced excellent research, there remains a gap between the capabilities being developed in the research community, and the capabilities being developed by commercial search engines. The core of this discrepancy between the advances in research and advances in industry is understanding the user's location. The vast majority of research on user location assumes that the user's location is known, because the user has provided a GPS signal. For many systems, there is no GPS signal available. The user may choose not enable it, or the system chooses not to prompt the user for the location because doing so degrades the user experience. For these interactions, the system relies on the user's IP address for location information. Further, much of the current research uses public geocoded data such as Foursquare (http://www.foursquare.com visited June 2015), and Twitter (http://www.twitter.com visited June 2015). These data are an incomplete picture of places a user may visit, and are potentially biased in their representation of actual users. The information contained in these data is not the same type of information typically available to a commercial search engine. In this talk we discuss gaps between current research on location, and industry advances in using location signals to improve search results. We focus on user location as one example of a gap between research and development.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2776783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As users turn increasingly to handheld devices to find information, the research community has focused on real-time location signals (GPS signals) to improve search engine effectiveness. Location signals have been investigated for predicting businesses the user will frequent[3], assigning geographic coordinates to media files[1], and to improve mobile search ranking[2]. While the increased focus on real-time user location has produced excellent research, there remains a gap between the capabilities being developed in the research community, and the capabilities being developed by commercial search engines. The core of this discrepancy between the advances in research and advances in industry is understanding the user's location. The vast majority of research on user location assumes that the user's location is known, because the user has provided a GPS signal. For many systems, there is no GPS signal available. The user may choose not enable it, or the system chooses not to prompt the user for the location because doing so degrades the user experience. For these interactions, the system relies on the user's IP address for location information. Further, much of the current research uses public geocoded data such as Foursquare (http://www.foursquare.com visited June 2015), and Twitter (http://www.twitter.com visited June 2015). These data are an incomplete picture of places a user may visit, and are potentially biased in their representation of actual users. The information contained in these data is not the same type of information typically available to a commercial search engine. In this talk we discuss gaps between current research on location, and industry advances in using location signals to improve search results. We focus on user location as one example of a gap between research and development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搜索位置
随着用户越来越多地使用手持设备来查找信息,研究团体将重点放在实时定位信号(GPS信号)上,以提高搜索引擎的效率。位置信号已被用于预测用户将经常光顾的业务[3],为媒体文件[1]分配地理坐标,以及提高移动搜索排名[2]。虽然对实时用户位置的日益关注产生了优秀的研究成果,但研究社区正在开发的功能与商业搜索引擎正在开发的功能之间仍然存在差距。研究进展与工业进展之间差异的核心在于对用户位置的理解。绝大多数关于用户定位的研究都假设用户的位置是已知的,因为用户已经提供了GPS信号。对于许多系统来说,没有可用的GPS信号。用户可以选择不启用它,或者系统选择不提示用户输入位置,因为这样做会降低用户体验。对于这些交互,系统依赖于用户的IP地址来获取位置信息。此外,目前的许多研究使用公共地理编码数据,如Foursquare (http://www.foursquare.com访问2015年6月)和Twitter (http://www.twitter.com访问2015年6月)。这些数据是用户可能访问的地方的不完整图片,并且在代表实际用户时可能存在偏见。这些数据中包含的信息与商业搜索引擎通常提供的信息不同。在这次演讲中,我们将讨论当前位置研究与使用位置信号改善搜索结果的行业进展之间的差距。我们将用户定位作为研究与开发之间差距的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1