A Hierarchical Approach for Decoding Human Reach-and-Grasp Activities based on EEG Signals

Bhagyasree Kanuparthi, A. Turlapaty
{"title":"A Hierarchical Approach for Decoding Human Reach-and-Grasp Activities based on EEG Signals","authors":"Bhagyasree Kanuparthi, A. Turlapaty","doi":"10.1109/SPCOM55316.2022.9840794","DOIUrl":null,"url":null,"abstract":"Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于脑电图信号的人类伸手抓握活动分层解码方法
肢体残疾患者,如瘫痪、截肢和中风患者,很难独立完成日常活动。使用脑电图(EEG)信号的脑机接口(BCI)是这些患者康复的一种选择。BCI功能可以通过对假肢手臂的直观控制来解码肢体的运动来增强。然而,用传统的分类器对它们进行解码是一项具有挑战性的任务。本文提出了一种两阶段层次结构的抓取动作解码框架。在阶段1中,基于功率谱密度特征和精细k近邻分类器(FKNN)将动作信号从休息段中分离出来。在阶段2中,使用FKNN分类器的均值绝对值特征,将识别为动作的信号进一步分类为掌型和侧型伸手抓握动作。与现有分类器相比,该方法具有85.38%的测试准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
C-Band Iris Coupled Cavity Bandpass Filter A Wideband Bandpass Filter using U-shaped slots on SIW with two Notches at 8 GHz and 10 GHz Semi-Blind Technique for Frequency Selective Channel Estimation in Millimeter-Wave MIMO Coded FBMC System Binary Intelligent Reflecting Surfaces Assisted OFDM Systems Improving the Performance of Zero-Resource Children’s ASR System through Formant and Duration Modification based Data Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1